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Abstract

Reinforcement Learning has been found repeatedly missing in the literature
about recon�guration and locomotion tasks in Self-Recon�gurable Modular
Robots.

This methodology, however, has been proved to produce signi�cant ben-
e�ts in those cases where it was used to solve problems related to dynamic
and unpredictable environments. This kind of environments is very common
when dealing with Self-Recon�gurable Modular Robots.

In this work, we �rst survey the state of the art in the �eld of Self-
Recon�gurable Modular Robots, in order to determine what the yet unsolved
problems and the possible niches of research are. We then develop a simula-
tor in order to study the Reinforcement Learning methodology applied to the
generation of behaviours that e�ciently solve recon�guration and locomotion
tasks using the M-TRAN Self-Recon�gurable Modular Robot. Finally, sev-
eral experiments are suggested in order to test this methodology. For those
experiments it is necessary to de�ne the best representation for the state-
action space, and the way to discretize it in order to make those experiments
computationally feasible. Another issue analyzed is the impact of several
aspects involved in Reinforcement Learning problems, such as the de�nition
of an episode, the learning velocity and policy evaluation.

Since this kind of study involves a signi�cant experimental component,
after designing and performing the experiments, the results are analyzed
and conclusions are then drawn about the e�ectiveness and possibilities of
Reinforcement Learning when applied to these kind of robots.
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Chapter 1

Introduction

We are immersed in a reality in which robots constitute an increasingly com-
mon and necessary element for solving tasks with higher e�ciency and lower
risk for humans. Robots are present everywhere, from industry to entertain-
ment and medicine. However, in most cases, these robots are restricted to
a well known and not very �exible environment. Should the environment
change, the robot might be rendered partial or completely unusable, since it
would stop complying to the conditions for which it was designed.

There are many types of robots, with di�erent characteristics. They can
be used as mobile platforms, as manipulators and even as mobile laboratories.
Due to the fact that they operate in environments with rigid constraints, they
cannot be used in scenarios for which they where not designed.

It is here where Self-Recon�gurable Modular Robots shine. These robots
are composed of several independent modules, which can be combined in
several ways. Thanks to this, it is possible to build di�erent kinds of spe-
cialized robots from the same modules. These robots can also change their
own structure so the better adapt to each individual task and environment
in which they have to operate.

It is because of this that these type of robots can overcome the limita-
tions of non-recon�gurable robots. Being modular, they can acquire di�erent
capacities on di�erent occasions, and for example, combine the capacities of
a mobile platform with those of a manipulator, so to obtain the bene�ts of
both kind of robots.

On the other hand, in the �eld of Machine Learning, there exists a
methodology called Reinforcement Learning [Sut98, Wat89] that constitutes
an e�cient way to �nd solutions to problems in dynamic and unstructured
environments, as well as executing complex tasks that depend on unforesee-
able features of the environment.

In this work we inform about the state of the art in the the �eld of Self-
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Recon�gurable Modular Robots, in order to determine the yet unresolved
problems and possible niches of investigation of this �eld (chap. 2). Then we
present the hypothesis we want to verify, and the tools that will be used for
that aim (chap. 3). Amongst them there is a simulator entirely developed in
order to study the use of Reinforcement Learning to obtain behaviours that
e�ciently solve locomotion and recon�guration tasks on a M-TRAN Self-
Recon�gurable Modular Robot. Finally (chaps. 4 and 5) we propose several
experiments that involve the mentioned tasks and for which we study the best
representation for the state-action space, the way to discretize this space in
order for the experiments to be computationally feasible, and the impact of
several aspects involved in a learning problem (de�nition of episode, learning
velocity, evaluation of the learned policy). After designing and executing
the experiments, we evaluate the obtained results and conclude about the
e�ectiveness and possibilities of Reinforcement Learning when applied to
this kind of robots (chap. 6).



Chapter 2

State of the art

2.1 Introduction

In this chapter we analyze the state of the art in the �eld of Self-Recon�gurable
Modular Robots at the time we began this work.

We will see why this kind of robots are necessary, the bene�ts that can
be obtained by using them, and the scenarios in which they can be used.
Besides that, we will see why sometimes a more �classical� robot cannot be
used, and what tasks are better suited for self-recon�gurable robots.

The rest of this chapter is organized as follows: in section 2.2 we state the
main de�nitions and establish the capacities required by a Self-Recon�gurable
Modular Robot. In section 2.3 we describe a possible taxonomy for this kind
of robots. Section 2.4 deals with the most common problems encountered
when working with this kind of robots. In section 2.5 we describe the most
representative Self-Recon�gurable Modular Robots found in the bibliogra-
phy. Section 2.6 explains how some of the presented problems have been
solved by the di�erent researchers. In section 2.7 we analyze in more detail
some of the cited examples, and �nally, in sections 2.8 and 2.9 we discuss
some considerations and state our conclusions about this type of robots.

2.2 Main characteristics about Self-Recon�gurable

Modular Robots

In this section we will discuss the main characteristics that describe Self-
Recon�gurable Modular Robots.

3
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2.2.1 What are Self-Recon�gurable Modular Robots?

• They are modular

Modular robots are composed of many interconnected modules.

• They are recon�gurable

A robot is said to be recon�gurable when it is possible to modify it's
structure in order to adopt di�erent con�gurations that allow it to
perform di�erent tasks.

• They are self-recon�gurable

A robot is said to be self-recon�gurable when it can recon�gure itself
by it's own means, without external intervention.

2.2.2 What makes Self-Recon�gurable Modular Robots
so interesting?

Several aspects can be identi�ed that make Self-Recon�gurable Modular
Robots an interesting topic for research. In this section we will analyze
the most relevant of them.

Robustness

�Self-Recon�gurable robots are made from many identical mod-
ules and therefore if a module fails it can be replaced by another.�
[Sto04]

Since these robots are built from individual modules, it is possible to
replace a defective module (or even separate it completely from the robot) so
that it doesn't a�ect the behaviour of the robot. This characteristic allows
the robot to degrade it's performance gradually instead of being rendered
unusable by the malfunctioning of one module.

Versatility

�The modules can be combined in di�erent ways making the same
robotic system able to perform a wide range of tasks.� [Sto04]

A Self-Recon�gurable Modular Robot can acquire di�erent con�gurations
and use di�erent kinds of modules in order to attain di�erent objectives. In
this way, it is possible to equip the robot with the best tools for each task it
has to perform at the time it has to perform it.
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While di�erent tasks require di�erent abilities, the robot remains the
same (since modules are reused, even when the external structure of the
robot varies, it will be composed of the same modules), but it can be pre-
pared optimally for each new task at hand. This means that one Self-
Recon�gurable Modular Robot can perform the same tasks for which several
non-recon�gurable specialized robots would be required.

Naturally, this doesn't mean Self-Recon�gurable Modular Robots are the
solution to every problem, because the production cost of these kind of robots
might exceed the cost of several more specialized robots.

However, there are cases in which the utility of one Self-Recon�gurable
Modular Robot greatly exceeds the cost di�erence. The most adequate sce-
narios for this kind of robots are those in which the environment in which they
have to operate are dynamic and unstructured, and when there is very little
(or none at all) information about the environment in which the robot will
have to perform (for example in tasks like planetary exploration, or search
and rescue in collapsed buildings).

In this kind of scenarios, the ability of these robots to acquire new con-
�gurations is critical. Due to the fact that it is not possible to accurately
anticipate the environment, it is necessary for the robot to be able to adapt
itself to the environment dynamically. Most specialized robots require that
the environment is determined beforehand and be regulated according to
strict speci�cations, and are therefore not adequate in these circumstances.

Cost

�When the �nal design for the basic module has been obtained, it
can be mass produced, thereby keeping the cost of an individual
module low, compared to it's complexity.� [Sto04]

Even though Self-Recon�gurable Modular Robots can be quite expensive
to produce, due to the hardware complexity required to incorporate all nec-
essary components in independent modules, and due to the complexity of the
software required to solve the recon�guration task, in many cases it can be
more cost-e�cient to use these kind of robots instead of several specialized
robots in order to attain the same goals.

Besides that, the robustness of these robotic systems lessens the Total
Cost of Ownership (TCO), since the same robot can be used in a diverse
set of circumstances, avoiding the need of a specialized robot for each one of
those cases.

Robustness, versatility and adaptability of these robotic systems provide
them with a greater expected service lifetime than their non-recon�gurable
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peers, since in traditional systems, in which several specialized robots interact
in order to attain a goal, when one of these fails, it can force the entire group
to abort the task. If this happens in a situation where it is not possible to
recover the robots, the failure of the tiniest component would be as costly
as the whole robotic system. It is in these cases when Self-Recon�gurable
Modular Robots are clearly less costly.

Adaptability

�While the self-recon�gurable robot performs it's task, it can
change it's physical shape to adapt to changes in the environ-
ment.� [Sto04]

Adaptability is a crucial factor when a robot has to operate in an envi-
ronment that is dynamic and unstructured, in which operating conditions
cannot be foreseen (or are stable enough).

In this situations, if the robot cannot adapt itself to the local conditions, it
can become handicapped by external agents, without attaining it's objective.

Self-Recon�gurable Modular Robots perform particularly well in these
kind of environments, since their ability to change their structure allows
them to overcome unforeseen obstacles.

In an extreme case, it is even possible to detach part of the structure
(that may have become unusable for some reason), and continue to operate
(even though it might be in some restricted way).

Scalability

�The size of the robot system can be increased or decreased by
adding or removing modules.� [Sto04]

Since Self-Recon�gurable Modular Robots are built from interconnected
modules, it is possible to add more modules at some later point in order to
allow the robot to attain con�gurations that require of a �greater size�.

It is even possible for the robot to divide in smaller robots that can operate
in parallel (and possibly perform di�erent tasks), and later on reassemble in
a single unit. This is specially useful for robots that perform exploration or
patrolling tasks, since operating in parallel allows them to cover more surface.

Generally speaking, whenever a single robot has to perform tasks that
can be divided in smaller sub-tasks, and where certain degree of paralleliza-
tion exists, a Self-Recon�gurable Modular Robot can produce a signi�cant
di�erence in performance, by dividing itself in smaller robots that can each
be assigned a sub-task.
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2.2.3 What are the best scenarios for Self-Recon�gurable
Modular Robots?

Search and Rescue

Any scenario in which the robot has to explore a certain location, like for ex-
ample a collapsed building, in which operating conditions cannot be foreseen,
can be an ideal case for these kind of robots. There could be rubble that
the robot must go through; there could be holes and passages that lead to
areas otherwise inaccessible, or there could even be places where the ground
couldn't sustain too much weight. In this scenario, the robot might have to
interact with people (in the case of �nding survivors), objects (when retriev-
ing objects from within the building) and the environment as a whole (in
manipulating objects or moving obstacles).

A task like this would normally require several types of robots: a robot
with good locomotion abilities, a manipulator robot, a robot that could inter-
act with people, etc. The problem resides in that many of these specialized
robots require controlled environments to operate correctly, a condition that
most likely wouldn't hold in a scenario like the one previously described.

On the other hand, a Self-Recon�gurable Modular Robot could operate
e�ectively in this kind of environment. If the ground were �at enough, it
could �rst con�gure itself as a wheel, to move inside the building; at the
presence of obstacles it could recon�gure itself to a more adequate con�gu-
ration in order to overcome them. It might even �nd an opening that would
allow it to pass to an area otherwise inaccessible, and it could recon�gure it-
self to pass through that opening, and once on the other side �nd out the best
suited way to continue, according to the requirements of that new situation.

Once evaluated the situation, the robot might go back and let another
team to continue the work; it might determine the necessary conditions for
a more specialized robot, that would then have a predictable environment
to operate in (having the environment being already assessed by the �rst
robot). It might also be possible to send the same robot, but equipped with
a di�erent set of modules that would aid it to better solve the new situations
encountered.

As mentioned, it can be seen that Search and Rescue is a perfect sce-
nario for these kind of robots, where the environment cannot be determined
beforehand (and can even change without notice).

Exploration

Exploration is another �eld apt for this kind of robot. From planetary explo-
ration to undersea exploration, any unknown or unpredictable environment
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constitutes a good opportunity to fully exploit these robot's capacities. In
this kind of environments they can show the true potential of their abilities
and successfully attain a goal that would be impossible to ful�l for other
types of robots.

Again, it is the capacity to operate in unpredictable and highly dynamic
environments and to adapt to changes in these environments what makes
Self-Recon�gurable Modular Robots so exceptionally well prepared for ex-
ploration tasks. This capacity (to adapt to environmental changes) gives
them a competitive advantage over their non-recon�gurable pairs.

It doesn't matter how well these robots perform in the mentioned scenar-
ios, it is their ability to adapt and operate in a variety of circumstances that
allows them to be used for nearly any task. They will of course not be as ef-
�cient as task-speci�c robots, but thanks to their versatility, this factor does
not hinder their competitivity. On the contrary, they constitute a perfect
choice in many cases, specially when there is a monetary limitation but it is
required to use robots for several tasks, since it might be cheaper to acquire
one Self-Recon�gurable Modular Robot than several specialized robots.

2.3 A classi�cation for Self-Recon�gurable Mod-

ular Robots

The proposed classi�cation is based on existing classi�cations, that distin-
guish robots according to several properties: the classi�cation according the
homogeneity of the modules [Rus00, Dit04, Cas02] and the classi�cation ac-
cording to the spatial structure of the modules [Dit04, Yos01b, Cas02]. We
pretend to integrate both classi�cations into one that takes into account:
homogeneity and spatial structure of the modules, as well as the recon�gura-
bility of the robot. In this way it is possible to classify robots with a greater
level of detail than by using only one of the previously existing classi�cations.

The proposed classi�cation is structured according to the di�erent prop-
erties taken into account:

• Homogeneity

� Homogeneous

� Heterogeneous

� Hybrid (N-Homogeneous)

• Spatial structure
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� Chain-type

� Lattice-type

� Hybrid

• Recon�gurability

� Recon�gurable

� Self-Recon�gurable

It is worth noting that since this classi�cation only takes into account
Recon�gurable Modular Robots, those robots that are neither modular nor
recon�gurable are not being considered.

2.3.1 Modular Robots

The main characteristics of Modular Robots are that they are composed of
a set of independent interconnected modules, that can be either specialized,
built speci�cally for a particular robot, or standard o�-the-shelf modules,
built for generic use.

Homogeneous Robots

In this type of robot, all modules are identical.

• Advantages
Since all modules are identical, they can be mass-produced. This allows
for a lesser total cost of the robot.

Since there is only one type of module, the recon�guration problem
signi�cantly simpli�es, because the problem of selecting the correct
type of module is no longer an issue (all modules can be selected, since
they are identical).

• Disadvantages
Each module must be self-contained, providing it's own energy, actua-
tors and sensors. For this reason, this type of modules tend to be quite
big, what generally mean heavier and makes them more expensive to
produce and di�cult to operate.

Besides, each module must provide itself with all types of actuators
and sensors that might be needed for the robot as a whole, which
clearly isn't an optimal resource allocation strategy, because not all
modules perform the same task (using the same sensors and actuators)
simultaneously, and thus might share their resources.
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Heterogeneous Robots

This type of robots can be built up from di�erent types of modules, that
each posses di�erent characteristics.

• Advantages
It is possible to specialize each module according to it's function, sim-
plifying their manufacturing and reducing their cost.

It is possible to add speci�c modules on demand, allowing the robot to
assimilate them as if it would have been designed with those modules in
the �rst place, giving it therefore greater functionality as it is required,
and allowing for an incremental improvement process along the robot's
service life. In this way, it is possible to use certain modules as a
base con�guration for the robot and later on add specialized modules
according to the task at hand.

• Disadvantages
The recon�guration task is more complex, since having several types of
modules involves having to take into account the number of each type
of modules available, and how they interact with each other.

Modular diversity restrains the number of modules of each type, and
therefore one module can become a critical part of the robot, when no
replacement for that module can be found in the remaining structure.

N-Homogeneous Robots

N-homogeneous robots represent an intermediate case between a homoge-
neous and a heterogeneous robot. This type of robots can be composed by
modules of maximum N di�erent types.

• Advantages
The amount of di�erent modules that must be taken into account is
small (normally, between 2 and 3). This allows the recon�guration
problem to remain bounded and not turn out so complex as in the
fully heterogeneous case.

Since the amount of di�erent modules is bounded, the construction of
the robot is not as complex as in the fully heterogeneous case, and
since there are several types of modules, each one can be specialized
in a particular task, allowing them to be smaller, more e�cient and
cheaper to produce.
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• Disadvantages
It's not always possible to replace a module for some other one (since
there are di�erent kinds of modules).

It's necessary to maintain a low heterogeneity for the complexity to
remain bounded (otherwise this will constitute a case of a heterogeneous
robot).

2.3.2 Recon�gurable Robots

A robot is said to be recon�gurable, when it is possible to modify it's structure
in order to attain di�erent con�gurations that allow it to perform di�erent
tasks.

• Advantages
The recon�guration ability of a robot makes it more versatile, since it
can operate in a variety of situations.

• Disadvantages
Robots that posses the recon�guration capacity are more complex to
build, and thus their cost is higher. Likewise, recon�gurable robots
need to use a more complex software, which further increases the de-
velopment cost.

2.3.3 Self-Recon�gurable Robots

A robot is said to be self-recon�gurable when it can recon�gure itself by it's
own means, without external help.

• Advantages
A self-recon�gurable robot possesses all advantages of a recon�gurable
robot, and can operate in dynamic and unpredictable environments,
thanks to it's autonomous nature given by it's independence of exter-
nal help to recon�gure itself. This autonomy allows it to be used in
environments where external intervention (mostly human) is not pos-
sible.

• Disadvantages
A greater autonomy implies a greater complexity both in software as in
hardware, resulting in a more complex and expensive manufacturing.
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Chain-type Robots

In chain-type robots, modules are categorized into di�erent roles, according
to their location.

• Branching modules

These modules are connected to at least three other modules.

• Chain modules

These modules are connected to exactly two other modules.

• End modules

These modules are connected to exactly one other module.

Recon�guration is achieved by changing a module from one type into an-
other (attaching or releasing other modules), until the desired con�guration
is reached.

Lattice-type Robots

In this kind of robots, modules interconnect in a lattice structure. Recon�g-
uration is achieved by changing the modules location within that structure,
until the desired con�guration is reached.

Hybrid Robots

The case of the M-TRAN robot (see section 3.2) is a special one; this a a
robot that has both the qualities of a chain-type robot as well as those of
a lattice-type robot. For that reason it's necessary to include the hybrid
category in this classi�cation.

Chain-type vs Lattice-type Robots

Lattice-type robots are better at solving the recon�guration task than their
chain-type counterparts. In the latter case, a module chain has to bend and
dock with the rest of the robot. This process involves several modules and is
hard to control.

The advantage of lattice-type systems is that just a few modules are in-
volved in the recon�guration process. However, even when these systems are
better at the recon�guration task, the current implementations are not very
e�cient. This is basically due to the di�culty of coming up with an e�cient
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connection mechanism. One of the most successful approaches is found in
the implementation provided by the M-TRAN robot [Kur02, Mur02].

Other interesting systems include Telecube [Suh02], Molecule [Kot98] and
I-Cubes [Üns99], but there haven't yet been enough modules built in order to
evaluate these systems on a big scale [Sto04]. The other evaluated robots (see
section 2.5) are bidimensional, which notably simpli�es the recon�guration
task.

Chain-type self-recon�gurable robots have a greater degree of mobility
than lattice-type robots. The reason for that is that generally speaking the
DOF of chain-type robots are less restricted than in the case of lattice-type
systems. If we analyze the di�erences between those systems it can be seen
that chain-type systems are designed to achieve locomotion using a deter-
mined shape and eventually recon�gure to chain their shape. Lattice-type
systems on the other hand are designed mainly for recon�guration. An excep-
tion to this is the M-TRAN robot, which constitutes a middle-case between
a chain-type and a lattice-type robot.

2.4 Common problems

In this section we discuss some of the more commonly found problems with
Self-Recon�gurable Modular Robots. Since this type of robots is still in an
early stage of research, most of the problems relate with basic tasks like
locomotion and recon�guration.

2.4.1 Recon�guration

The �rst problem a Self-Recon�gurable Modular Robot has to solve is the
one that gives it it's main characteristic: recon�guration (although, strictly
speaking, self-recon�guration).

The �rst question that arises when trying to solve the recon�guration
problem is: how to achieve it?

In order to change it's structure, the robot must have a �notion� of the
form (structure) it currently has, the con�guration it wants to reach, and the
steps needed in order to complete the transformation.

Thus, one of the main issues that has to be solved in order to attain
recon�guration is how to switch between two determined con�gurations.

Other problems speci�c to the recon�guration task are:

• Docking

• Connection mechanism
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Docking

This problem mainly a�ects chain-type robots. This type of robots need to
dock with themselves in order to change a module from one type into an-
other. Since docking must happen automatically and autonomously (without
external intervention), this constitutes one of the main problems that need
to be solved.

In order to dock, there must be a way for two modules to �sense� and �rec-
ognize� each other, so that they can connect to each other (it is necessary to
keep monitoring the whole process to control the delicate movement required
to align the modules so that the connection mechanism can be e�ective).

This requires some method to sense other modules, and some way to
perform directed and precise movements. This is a non-trivial requirement,
since it imposes restrictions both on hardware and software (which makes
the whole robot's development more complex).

Connection mechanism

Another factor that has to be taken into account is the connection mechanism
that is used between modules.

A good connection mechanism must be as simple as possible, and at the
same time, robust enough to guarantee that the modules will not break apart
unless intended. [Nil02]

Another important aspect to take into account when designing a con-
nection mechanism is the maximum force the mechanism can tolerate. This
can have a profound impact in the global performance of the robot, since a
mechanism that doesn't allow the robot to lift it's own weight will certainly
limit the recon�guration possibilities.

There are several proposals for connection mechanisms, some using me-
chanical properties [Rus00, Nil02, Yim00, Cas02], some using magnetic prop-
erties [Yos01a, Pat04, Mur94, Suh02, Jor04, Kur02]. Many of the proposed
mechanisms are not fault-tolerant, meaning that when one module fails there
is no way to separate it from the rest of the structure. However there are
some solutions that show to be promising in that aspect [Jan01].

2.4.2 Locomotion

Once the recon�guration task has been solved, the next problem that arises
is that of locomotion. This is due to the fact that locomotion is the �rst task
a Self-Recon�gurable Modular Robot has to perform successfully in order to
be used in real-world scenarios.
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To achieve locomotion, the recon�guration task must be solved, since
in the case of chain-type robots, the robot has to acquire a con�guration
that will allow it to move around, while lattice-type robots must constantly
recon�gure themselves in order to move.

So, this problem can then be divided into two cases, according to the
robot's type.

Chain-type Robots

In chain-type robots, locomotion is normally achieved by following a prede-
�ned program for a given con�guration, that will use a table of stored moves
(gait control table) to guide to robots actions so that it will perform the
desired movement.

The �rst issue with this approach is how to build that table, and how
to store it, since depending on the robot's con�guration, a simple �step�
might involve actions on several modules. This, and the fact that a Self-
Recon�gurable Modular Robot might acquire several con�gurations, results
in the table's size to grow rapidly.

On the other hand, this also imposes a restriction on the hardware the
robot must posses, in order to acquire locomotion abilities. These hardware
requirements make the movements required to move a robot to become more
complex, since more hardware is involved in each of those movements.

Because of this it is necessary to �nd a middle-ground between the robot's
locomotion capacities and the hardware used to build it (and with that, the
cost of the robot).

Lattice-type Robots

These type of robots move by constant recon�guration. By changing each
module's location, the whole robot can be transported to a new location,
e�ectively performing locomotion.

In these kind of robots, the problem is that locomotion and recon�gura-
tion really merge into one indivisible unit, which must be solved at the same
time (a lattice-type robot that cannot move it's own modules cannot possible
constitute a self-recon�gurable robot).

So, even if locomotion is a more �natural� ability to this kind of robots,
they are generally more complex than their chain-type counterparts, and thus
more complicated to build.

Most of the lattice-type robots are used as cellular-automata, in which
each cell represent a module, and therefore they are (most of the time) pro-
grammed using cellular automata theory (by specifying rules that dictate the
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movement of each module for each time period).
Naturally, in order to store those rules in the robot itself, it is necessary

to have enough memory, and since these rule-sets are almost never small,
and tend to become larger as the movements get more complex, the amount
of memory needed becomes an inconvenient.

While used memory increases, the access times needed to determine to
correct rule and execute it get longer, and therefore a�ect the performance
and the real-time capabilities the robot might present. As can be seen,
this problem also apply to chain-type robots (where the increase in the gait
control table's size produces the same e�ect).

2.4.3 Methodology

Even if this does not really constitute a problem by itself, in this section we
will discuss some of the di�erent methodologies used by researchers when
developing controllers for the locomotion and recon�guration tasks.

Methodologies can be classi�ed into:

• Planning

• Evolution

• Learning

Planning

The most widely used methodology tends to be planning (that is, to deter-
mine beforehand the robot's reaction to every possible situation). Most of
researchers using this technique, used gait control tables to encode the neces-
sary movements for locomotion [But02, Jor04, Kur02, Yim00]. This approach
consists of assigning a set of actions (possibly in some speci�ed order, for ex-
ample sequential) to a state, so that whenever the robot �nds itself in that
state, it will perform the indicated actions. Normally, associative structures
like tables are use to store these relationships, and hence the name.

Several works deal with how to apply this technique to various aspects
involved in the recon�guration task. Some of them study the problem of
planning the immediate recon�guration movement sequence [Yos01a, Yos01b,
But02], while others use planning to determine the movement on a global
level, like for example, trajectory planning [Yos01a, Yos01b].

Planning appears to be a successful strategy for dealing with the prob-
lems involved in this task, but somehow forces the developers to �prepare� the
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robot's reaction in advance (by utilizing a previously designed movement ta-
ble, for example), and impose hard restrictions on the robot's hardware (since
most planning algorithms require of considerable computing power), so that
they might even risk to go against the basic principles of Self-Recon�gurable
Modular Robots (i.e, being autonomous and self-contained).

Evolution

Another approach was using evolution (as in genetic algorithms). Some au-
thors decided to let the controllers evolve, in order to produce better con-
trollers than could be obtained by alternative ways (like planning-generated
or hardcoded controllers) [Kam03].

The evolutionary approach allowed the researchers to lessen the bias in-
troduced into the controllers, and by letting the genetic algorithms to deter-
mine the optimal controllers, they could increase the robot's performance,
thus reducing the cost-performance ratio.

This methodology however has the inconvenient that in order to obtain a
su�ciently good controller, the genetic algorithm must run for a considerable
amount of time (which diminishes the possibilities of using the robot in real-
time scenarios). Beside that, since the �tness function must be modi�ed
each time the robot's physical structure changes, this will make it necessary
to regenerate the controller. This also a�ects the robot's ability to adapt
itself to the environment in a fast and responsive way.

Learning

Surprisingly enough, this methodology seems not to have been explored.
The learning approach has the advantage of allowing the robot to adapt
continuously to the environment and learn from the interaction.

From the robot's perspective, a change in the perception of the environ-
ment can be due to a real change in the environment, as well as to a change
in the robot's perception capabilities. Thus, if the robot is able to cope with
situations in an highly dynamic environment, it will also be able to modify
it's behaviour to adjust for di�erent perception capabilities (like when they
decrease, for example, in the case of some sensors breaking).

This characteristic will allow the robot to be used in the real environment
from an early stage in development, and evolving software and hardware
simultaneously.

By starting to learn from early stages in the robot's life-cycle, another
aspect gained is being able to verify the robustness of the robot's physical
implementation, as well as of it's controller. It would be possible to produce
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changes in the environment and evaluate how well the robot reacts, and at the
same time, the robot would be learning to cope with that kind of changes. On
the other hand, development and testing would be happening simultaneously,
e�ectively reducing development time, and therefore, it's cost.

Naturally, no methodology is ever perfect, and learning has it's owns
drawbacks. The mayor one is that it is necessary to invest a great amount
of time in order to learn a behaviour that solves a given task e�ciently
(but since learning happens since an early stage in development, part of the
invested time is actually gained). Another inconvenient is that in order to
learn, more computing power is required than, for example, using gait control
tables (that allow a robot the produce a prede�ned and limited behaviour),
but at the same time will allow the robot to acquire more complex behaviours
and even continuously re�ne them (without even mentioning the fact that it
would be able to adapt to changes in the environment).

As could be seen, since a change in the environment cannot be told apart
from a change the perception capabilities of the robot, by allowing it to
continuously adapt to the environment, the learning methodology embodies
the robot with the ability to cope with unexpected events and handle un-
foreseen situations or even react to events like the failure of some hardware
components.

2.5 The contestants

In this section we will name the main characteristics of several existing Re-
con�gurable Modular Robots (and some self-recon�gurable ones).

2.5.1 Chain-type Robots

CONRO

This robot was developed in the year 2000 by Will and Shen at the Poly-
morphic Robotics Laboratory of the University of Southern California's In-
formation Sciences Institute (USC/ISI). This is a homogeneous robot whose
modules measure 10cm in length and weight 115g approximately. Each mod-
ule, as can be observed in �gure 2.1, is composed by two motors (standard
radio-control equipment servomotors), two batteries, CPU (stamp II micro-
controller) and IR sensors. It possesses a bipartite connection mechanism
(1 female and 3 male connectors per module). Modules have two DOF that
allow them to perform vertical (pitch) and horizontal (yaw) movements. IR
sensors are used for data transfer as well as inter-module communication.
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Figure 2.1: CONRO module (top). CAD model of a CONRO module (left).
A hexapod robot built using CONRO modules (right). (USC Information
Sciences Institute)

Polybot

This robot was developed at the Xerox Palo Alto Research Center in the
year 2000, by Yim et al. Since then, three generations of this robot have
been designed (G1, G2 and G3). This is a homogeneous robot, in which each
module has one motor (in the G3 version, this a modi�ed version of a 32mm
Maxon motor), a battery, CPU (Motorola PowerPC 555, for the G3), and IR
sensors (used for inter-module communication). The connection mechanism
for these modules is based on hermaphrodite connectors. Figure 2.2 shows a
picture of the G2 version.

ACM

The ACM (Active Cord Mechanism) robot is a homogeneous robot that was
developed by Hirose et al. in 1993 at the Tokyo Institute of Technology. It
was mainly used for simulating serpent's movements. Even if this robot can
be used for manipulation and locomotion, and operates in 3D, this robot
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Figure 2.2: CAD model of a Polybot G2 module (left). Polybot G2 robot
con�gured as a wheel (right).

does not posses the ability of self-recon�guration.

Figure 2.3: ACM-R1 robot.

2.5.2 Lattice-type Robots

Metamorphic Robotic System

This robot was developed during 1994 by Chirikjian, at the Johns Hopkins
University, and then continued by Chirikjian and Pamecha in 1996. This
a homogeneous robot composed of hexagonal modules (as can be seen in
�gure 2.4), each of which has 3 DOF (actually the modules consist of six
interconnected rods, with actuators every two joints). Even though each
module can connect to, disconnect from, and rotate around another modules,
the recon�guration possibilities are limited to 2D (since actuators operate at
a bidimensional level). Each module has male and female connectors (and
therefore this is a bipartite connection mechanism), but despite of this, there
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is no way for two connectors of the same gender to dock (which greatly
simpli�es the docking task). Even though a self-recon�gurable robot must
have it's own CPU, in the work published in 1996, the CPU wasn't yet
integrated in the module, and an external controller was used (Motorola
68HC11).

Figure 2.4: Two Metamorphic robot modules.

Crystalline

The Crystalline robot, developed by Rus and Vona at the Dartmouth College
in the year 2000, is another example of a homogeneous robot. Its modules are
composed of a CPU (Atmel AT89C2051), an IR communication system and
a battery and it uses a bipartite connection mechanism. Recon�guration is
achieved by expanding and contracting the di�erent modules and by changing
the connections between modules. Despite it's design being planar, it is
possible to extend it to three dimensions. A Crystalline module can be seen
in �gure 2.5.

Fractum

Developed by Tomita and Murata in the year 1999 at the National Institute
of Advanced Industrial Science And Technology, this homogeneous robot
consists of modules that each one possesses a CPU (Zilog Z80), an optical
communication system, batteries and three spherical wheels. It's connection
mechanism is bipartite and consists of 6 connectors (3 for each gender), using
electromagnetic connectors as well as passive magnets. This robot, which can
be seen in �gure 2.6 can only adopt planar con�gurations (2D).
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Figure 2.5: Model of an expanded and contracted Crystalline module (left).
Crystalline module (right).

Figure 2.6: Three Fractum robots.

Micro Unit

The Micro Unit robot was developed in 2002 by Yoshida et al. at the National
Institute of Advanced Industrial Science and Technology (AIST). This robot
centers on miniaturization by using intelligent materials like SMA (Shape
Memory Alloy), for connectors as well as for actuators. Its implementation
can be observed in �gure 2.7.

RIKEN Vertical

The RIKEN Vertical robot was developed in 1998 at The Institute for Phys-
ical and Chemical Research (RIKEN) by Hosokawa et al. This is an interest-
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Figure 2.7: Micro Unit module (left). Structure formed by Micro Unit mod-
ules (right).

ing example, since even though this robot's recon�guration capabilities are
restricted to a plane, contrary to other similar robots, for this robot the verti-
cal plane was chosen. Its modules have 2 DOF and use magnetic connectors.
Figure 2.8 shows an example of this robot.

Telecube

This robot was developed by Suh, at PARC in 2002. According to what can
be seen in �gure 2.9, this is a three-dimensional version of the Crystalline
robot. In this homogeneous robot, mobile magnets are used for docking.

MEL 3D Unit

The MEL 3D robot was developed by Murata et al. in the Mechanical
Engineering Laboratory at AIST, in the year 2000. This homogeneous robot
is capable of self-recon�guration in 3D.

Molecule

This robot was developed by Kotay, Rus and McGray in 1998 (Dartmouth
College). A module consists of two interconnected �atoms� with 2 DOF.
This homogeneous robot is capable of three-dimensional recon�guration. A
picture of these modules is shown in �gure 2.10.
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Figure 2.8: Model of RIKEN Vertical modules (left). RIKEN Vertical robot
con�gured to climb stairs (right).

M-TRAN

The M-TRAN (Modular Transformer) robot, developed by Murata et al.
during the year 2000 at the Intelligent Systems Research Institute of the
National Institute of Advanced Industrial Science and Technology, is an ex-
ample of a homogeneous robot whose modules have 3 connectors at each
edge and posses 2 DOF. The connection mechanism is bipartite and allows it
to perform three-dimensional self-recon�guration. This robot will be further
analyzed in chapter 3.

I(ces)-Cubes

I(ces)-Cubes was developed by Ünsal y Khosla in the year 2000, at the In-
stitute for Complex Engineered Systems of the Carnegie Mellon University.
This robot characterizes by being one of the few heterogeneous cases. There
are two types of modules: the �link� module, which measures 80mm long
and weights about 370g, possesses three DOF, as well as two �male� connec-
tors, that can manipulate �cube� modules (which are entirely passive), which
contain exclusively �female� connectors on each side. This robot is capable
of self-recon�guration. A pair of �cube� and �link� modules can be seen in
�gure 2.11.
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Figure 2.9: A Telecube robot (left). CAD model of a Telecube module in
expanded state (right).

Fracta

This robot (shown in �gure 2.12) is the three-dimensional version of the Frac-
tum robot. It was developed around 1998 by Murata et al. at the Mechanical
Engineering Laboratory (AIST). This homogeneous robot was the �rst sys-
tem capable of self-recon�guration. With it's cube-like modules measuring
approximately 25cm long and weighting 7Kg, this 12-DOF per module robot,
clearly shows the typical problems found in homogeneous systems: modules
tend to be big and cumbersome.

Proteo

Proteo was developed by Bojinov et al. in the year 2000 at the Xerox
Palo Alto Research Center. This homogeneous robot consists of rhombic-
dodecahedron-shaped modules, with 12 identical connection faces. For the
connection mechanism it uses electromagnetic connectors that allow it to
perform movements by a combination of rotations of the modules around the
edges of their connection faces. Having 12 connection faces involves a great
complexity and high cost. There doesn't yet exist implementations of this
robot, and the whole work about it has been done in simulations.

Miniaturized Self-Recon�gurable Robot

The Miniaturized Self-Recon�gurable Robot, developed at the Mechanical
Engineering Laboratory (AIST), was presented by Yoshida et al. in 1999.
This is a homogeneous robot of very little size (modules measure 40mm high,
50mm wide and weight 80g). The system was designed so it could use SMA
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Figure 2.10: The Molecule robot.

actuators that allow it to reduce it's size. The connection mechanism is a
bipartite one. It's reduced size only allows it a limited torque, thus reducing
the range of movements this robot can perform.

Semi-Cylindrical Recon�gurable Robot

Another homogeneous robot capable of operating in 3D is the Semi-Cylindrical
Recon�gurable Robot. This system, presented by Kurokawa in the year 2000
(developed at AIST), consists of modules formed by two semi-cylindrical
cubes having each one servo-motor. The connection mechanism uses mag-
netic connectors as well as SMA springs in order to undock. The small mag-
nets give it a limited strength and it's recon�guration capacity is bounded
by the bipartite nature of the connectors. Nevertheless, this robot is capable
of self-recon�guration in 3D.

TETROBOT

Developed by Hamlin and Sanderson in 1996 (Rensselaer Polytechnic Insti-
tute), TETROBOT is a homogeneous robot, that introduced a novel design
by using spherical joints. This robot, which can be seen in �gure 2.13 requires
for the recon�guration to be performed manually.

CEBOT

The Cellular Robotic System (CEBOT) was developed by Fukuda (Nagoya
University) and Kawauchi (Science University of Tokyo) in 1990. This is a
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Figure 2.11: �cube� and �link� modules for the I-Cubes robot.

homogeneous robot of cellular design that has limited sensing and computing
capabilities. This robot is not capable of self-recon�guration.

2.5.3 Comparison

As can be seen in table A.1 included in the appendix A, most of the research
on recon�gurable robots has been done with homogeneous systems, with the
aim to operate in three dimensions.

In most cases, modules can move around their neighbouring modules, and
a robot built using these type of modules is capable of self-recon�guration.

The amount of DOF varies between 0 and 12, being 2 DOF the dominant
choice.

There doesn't appear to be a fault-tolerant connection mechanism yet.
Most of the connection mechanisms depend on the module to be able to
detach itself [Jan01].

The size of the modules varies greatly (from the biggest, as Fracta, to the
tiniest like Micro Unit or Miniaturized Self-Recon�gurable Robot), but on
average their size lies in the 40mm - 80mm range (measuring width).

2.6 The Solutions

In this section we discuss some of the proposed solutions to the problems
described in section 2.4.
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Figure 2.12: Fracta robot modules.

Figure 2.13: TETROBOT.

2.6.1 Recon�guration

In most of Self-Recon�gurable Modular Robots researchers tried to solve the
recon�guration problem by using gait control tables.

According to this approach, the robot only has to determine which entry
in those tables corresponds to the actual state, and execute the actions stated
in that entry.

This is a simple and e�cient solution, but nevertheless has a pretty im-
portant inconvenient: the gait control tables must be built on advance, and
somehow transferred to the robot.

Since in this case recon�guration turns out to be just a lookup, the com-
puting time cost of this process is relatively low.
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This way of handling the recon�guration problem seems to be adequate
for chain-type robots, where, as seen before, recon�guration is independent
of locomotion, and therefore shouldn't be required to be done frequently
(the robot only needs to recon�gure when it is necessary to acquire a dif-
ferent locomotion gait, and therefore the amount of states involved in the
recon�guration task is low, thus bounding the size of the gait control table).

Another used approach is evolving that table [Kam03]. This approach
is less popular, but not less interesting, since it tries to avoid some of the
limitations of the previous approach. Through evolution, the robot is able to
operate in a variety of scenarios that may not have been anticipated, since it
is able to build it's own gait control table on demand, whenever a situation
arises for which the robot doesn't have a prede�ned solution.

With this last method it will be necessary to wait for a certain amount
of time before the robot can perform as good as by using pre-generated
control tables, but since the robot can be used even before it has completed
the table generation, the invested time in generating the complete table can
be equivalent to the time it would take a person to develop a correct and
complete gait control table.

Docking

An interesting example is the case of the Polybot robot, where researchers
developed a mechanism that allows the robot to dock by it's own means, only
using a couple of IR sensors [Rou00].

This example shows that even though the docking problem is not an easy
task, since it involves controlled movement, sensing and �acknowledging� the
�destination� module amongst several things, there are implementations that
solved this task reasonably well.

Another solution for this problem is using magnetic connectors [Yos01a,
Pat04, Mur94, Suh02, Jor04, Kur02] so that once the modules get near
enough to each other, the magnetic forces will attach them automatically.
This is a pretty clever solution, but requires that the modules be driven close
enough for the magnetic forces to be strong enough to draw the modules
together.

Connection mechanism

The connection mechanism is an indispensable aspect of a Self-Recon�gurable
Modular Robot, and therefore constitutes one of the central issues in it's
design.
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Most proposed solutions are based on some form of mechanical coupling,
using bipartite mechanical connectors (male/female) [Jor04, Sto02, Kur02,
Cas02]. Even though this is a simple and straightforward approach, it has
some inconvenients. The bipartite paradigm reduces the recon�guration pos-
sibilities, because a module can only connect to modules of the opposite gen-
der. If this is not possible (for example, when there are no modules of the
opposite gender nearby, due to the current con�guration), the robot will not
be able to change it's con�guration. On the other hand, most mechanical
connectors can only be controlled by the module, thus when one module fails
it cannot be detached from the rest of the robot (maybe thus degrading the
robot's performance).

Another attempt to solve this problem consists in using magnetic con-
nectors [Yos01a, Pat04, Mur94, Suh02, Jor04, Kur02]. In this case, the con-
nectors are more robust (magnets do not fail) and the bipartite restriction
can be avoided by using electromagnets (that can change their polarity).
Electromagnets however, require the module to function correctly, since it
is necessary to get electricity to �ow through the magnet in order to gen-
erate a magnetic �eld. In the event of power shortage in the module, it is
still possible to detach it, but nothing prevents the module to be unable to
detach itself even when it has a power supply (for example, if the circuit re-
sponsible for attaching/detaching fails, it might be impossible to revert the
electromagnets polarity).

Besides using passive magnets, some designers resolved to use SMA coils
(Shape Memory Alloy), that can produce enough force to separate the mag-
nets so that detaching of the modules is possible. A bene�t of these kind of
coils is that they are small and require very little power to operate.

2.6.2 Locomotion

Since locomotion is so closely bound to the recon�guration problem, the
proposed solutions for the latter issue also solve the problems that might
appear during locomotion.

Besides, normally the mayor issue during locomotion is to have the hard-
ware required (e.g. memory) to store the big control tables or rule-sets for
the cellular automata used to guide the movements. Since these hardware
issues are common to all kinds of robots, they are not further studied here.
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2.7 The outstanding

In this section we will further analyze the robots we consider to be the most
successful amongst the ones proposed in section 2.5.

The brief insight on each of these robots only serves the purpose of moti-
vating the reader to consult further bibliography regarding each one of them.
It is not our goal to provide a detailed analysis of the capabilities or limita-
tions of each one of the mentioned robots.

2.7.1 M-TRAN [Mur02, Yos01a, Yos01b, Kam03, Kur02,
But02]

This constitutes one of the most successful cases of a Self-Recon�gurable
Modular Robot. One of the reasons for that is that this robot is a hybrid
between chain- and lattice-type robots. This characteristic gives it the typical
bene�ts of both types of robots and reduces the impact of their respective
limitations.

An M-TRAN robot can operate (in regard of it's morphology) as a chain-
type robot and perform locomotion without recon�guration, or as a lattice-
type robot that recon�gures itself continuously in order to move around.

Its hardware is quite simple, and thus can be relatively cheap to pro-
duce. Given it's size, it doesn't have many physical limitations, but the fact
that it cannot generate too much force with it's motors (thus restricting it's
capability for lifting heavy weights).

For it's connection mechanism it uses passive magnets for coupling, and
SMA coils for decoupling. This provides it with a great �exibility for recon-
�guration.

Even though this robot is not as popular as some other robots presented
in this section, it has certain advantages of the other robots that positions
it in the top rank. This advantages include that thanks to it's simple and
relatively cheap hardware it can be used in situations in which due to the
economic factor, the other options must be discarded. Another advantage
is that in being hybrid it can operate as a chain-type or lattice-type robot,
allowing experimentation on both research �elds, without requiring two dif-
ferent robots.

Despite that, this robot has been mostly considered as a lattice-type
robot, and therefore the majority of research using this robot has been fo-
cused on cellular automata theory for locomotion [But02].

Nevertheless, it can be easily seen that it's design allows it to perform lo-
comotion with recon�guration, for what both aspects can be explored simul-
taneously, allowing researchers to �nd an equilibrium between both designs.
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2.7.2 Polybot [Yim00, Yim02, Rou00]

This robot can be considered to be the most popular one, and it has been
found to be in constant improvement. Even though simulations and demon-
strations with physical implementations have proven to show a very promis-
ing potential, this robot still shows one disfavourable aspect: it's hardware
is not as simple as the M-TRAN's, and by being more complex, it's cost is
higher.

The researchers at the Palo Alto Research Center (PARC) have been
working on this robot for a long time now, and have continuously demon-
strated this robot's potential.

Even though this robot may not ful�ll the requirements of some research
team, Polybot must not be ignored, as it's creators constantly show novel
solutions to some real problems that might generate signi�cant improvements
within the �eld of Self-Recon�gurable Modular Robots.

2.7.3 CONRO [Cas02, Sto02, Sto03, She]

CONRO is a direct competitor for Polybot, but since it's hardware is the
most complex one amongst the choices analyzed in this chapter we confer it
the third rank.

It may be possible that it is not more expensive to manufacture than
the other robots, but since their modules are bigger and heavier, it's usage
opportunities are more restricted.

2.8 Discussion

Next we will introduce some ideas on how to improve the proposed robots,
and will discuss some requisites a robot must ful�ll in order to be more
e�cient.

2.8.1 Methodology

One of the main arguments of this section is that according the knowledge
gained through the available bibliography, an aspect that has shown to be
repeatedly ignored is the use of learning algorithms for locomotion and re-
con�guration tasks.

This methodology has so many advantages that it is a surprise for us
not to have found more references about it's usage in the �eld of Self-
Recon�gurable Modular Robots.
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Embedding the robot with learning capabilities would undoubtedly render
the robot more robust and versatile (both highly wanted qualities in a Self-
Recon�gurable Modular Robot).

2.8.2 Hardware design

Regarding hardware design, a successful robot must posses a hardware that
is cheap to produce and easy to manipulate (to allow recon�guration).

In order for a design to achieve these goals, several aspects must be taken
into account. An optimal resource utilization and distribution must be guar-
anteed in order to maximize the sensor, actuator and available energy ef-
fectivity. On the other hand, the possibility for a module to fail must be
contemplated, and it must be decided how to act upon such circumstances.

2.9 Conclusion

In this chapter we have brie�y presented the state of the art in the �eld of
Self-Recon�gurable Modular Robots, we have seen the main interest topics
of it, and we have presented some of the most common problems and how
they have been solved.

Several robots have been introduced, analyzing their main characteristics,
when they showed some novel or interesting solution to a problem inherent
to this �eld.

Then we proposed three robots as the most successful representatives of
the �eld, brie�y commenting their mayor virtues. We also re�ected on the
requirements a robot must ful�ll in order to be successful, and we discussed
some of the problems that the current designs had.

It clearly shows that this is still a young �eld withing the discipline of
robotics. However, there already have been some important advances in it.
There is still a long way to go before we can see Self-Recon�gurable Modular
Robots operating successfully in the real world, performing the tasks for
which they are best suited.

The appearance of Self-Recon�gurable Modular Robots marked a mile-
stone in robotics. Their �eld of action is wide, and their use might be ex-
tended to a great variety of scenarios. It is just a matter of time before we
can see this type of robots rescuing people from disaster areas, or exploring
distant planets autonomously.



Chapter 3

Hypothesis, Materials and

Methods

3.1 Objective

As mentioned in section 2.8, there was no mention in the bibliography of
using learning as a methodology for solving locomotion and recon�guration
tasks in Self-Recon�gurable Modular Robots.

According to the knowledge of Reinforcement Learning and it's �eld of
action, the hypothesis we want to verify is that Self-Recon�gurable Modular
Robots can be given tools that will allow them to learn adequate end e�cient
behaviours for solving locomotion and recon�guration tasks without human
supervision.

We determined that the most appropriate robot for this work would be
the M-TRAN robot, and that the experimentation would take place through
simulations, for which it was necessary to develop a simulator that would
contemplate all the characteristics of the problem: the simulation of an M-
TRAN robot's body structure as well as the implementation of the learning
algorithm.

In this chapter we will introduce some of the elements used along our
work. Next, we will describe the properties and characteristics of the used
robot, as well as the developed simulator and the implemented learning al-
gorithm.

3.2 M-TRAN

M-TRAN (Modular Transformer) is a Self-Recon�gurable Modular Robot,
developed jointly by AIST and Tokyo-Tech since 1998.

34
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This robot's design presents the advantages of both recon�gurable robot
types (chain-type and lattice-type), as seen in chapter 2. The hybrid design,
and particularly the shape of the blocks that compose this robot's modules
are key aspects that make this robot a very �exible system.

An M-TRANmodule is composed by two blocks, interconnected by means
of an axis (see �gure 3.1). Each one of the three �at surfaces of these blocks is
capable of connecting and attaching itself with the surface of another mod-
ule's block. Since each block has a determined gender, the surfaces of a
passive block can only attach to the surfaces of an active block, and vicev-
ersa. However, having three connecting surfaces per block allows modules to
connect to each other in several ways (see �gure 3.2).

Figure 3.1: Schematic representation of an M-TRAN module.

Figure 3.2: Coupling between two modules, in several relative positions.

As mentioned, this design allows the robot to perform as if it was a lattice-
type robot: if each block is orientated (with respect to the other blocks) in
a way such that it's motors are set at angles of -90, 0 or 90 degrees, then all
modules will be aligned in a three-dimensional grid-like structure.
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On the other hand, this robot can also be used as a chain-type robot:
if all motors (or at least several of them) are activated simultaneously, the
robot can then perform movements with great �exibility.

Each of the M-TRAN's modules has it's own controller, which provides
it with a certain amount of �intelligence� and autonomy. The di�erent mod-
ules interact through their controllers, constituting as a whole a Distributed
Autonomous System.

Currently, the M-TRAN robot sees it's third implementation. The �rst
version was developed around 1998. That implementation was characterized
by using magnetic connectors (see section 3.2.1), and was controlled remotely
through a cable. In it's second implementation (2002), the most signi�cant
improvements were aimed towards a greater autonomy, by using batteries,
a decentralized and distributed control and wireless communication to the
modules (one-way link). This version was a little smaller than it's prede-
cessor. Finally, the this version, built around 2005 got rid of the magnetic
connectors, replacing them by mechanical connectors (see section 3.2.1), and
provided the modules with full bidirectional wireless communication capa-
bilities, as well as IR proximity sensors.

Figure 3.3: Di�erent M-TRAN robot implementations: M-TRAN I (left),
M-TRAN II (center) y M-TRAN III (right).

3.2.1 Connection mechanism

Along it's evolution, this robot used magnetic as well as mechanical connec-
tors for the connection mechanism. Next we will detail both connector types,
as they were implemented.

Magnetic connectors

This type of connectors was used in the �rst and second implementations
of the M-TRAN robot. Each of the connection surfaces of the blocks of a
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module has permanent magnets. In passive blocks, those magnets are placed
directly on the connection surface, while in the case of active blocks, they
are placed on a mobile structure named connecting plate.

Figure 3.4: Magnetic connection mechanism.

The coupling/decoupling process goes like:

• Coupling

1. The connection surfaces touch each other.

2. The connecting plate is attracted towards the connecting surface
due to the magnetic force. The non-linear springs don't provide
enough resistance to counteract the magnetic force.

• Decoupling

1. A small light bulb turns on. This lamp generates heat, which
warms up the SMA coil around it.

2. The coil expands due to the heat, and separate the blocks as far
as needed for the magnetic force to be weaker than the repulsion
force e�ected by the non-linear springs.

3. The connecting plate separates from the connection surface due
to the force e�ected by the non-linear springs.

4. The light bulb turns o�, and the SMA coil starts to cool down,
allowing the coupling process to start over.
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Mechanical connectors

Since the magnetic connection mechanism used in M-TRAN I and II robots
was slow and consumed too much energy in order to control the connection
process, it was decided to use a mechanical connection mechanism in the third
version of this robot. That mechanism should allow the robot to perform the
coupling and decoupling process in a more e�cient and faster way than that
of their predecessors.

Unfortunately, we couldn't �nd detailed information about the structure
of this mechanical connector or of the mechanism controlling the coupling
and decoupling process.

The only information we could gather about this connector are the �gures
shown next.

Figure 3.5: M-TRAN III module.

Figure 3.6: Mechanical parts that compose an M-TRAN III module.

According to what can be seen in these �gures, the connection mechanism
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uses latches in the active blocks that are inserted into holes in the passive
blocks. The form of some of the pieces shown in the �gure 3.6 suggests that
once inserted, these latches are locked into position. However this is as much
as can be speculated about this connection mechanism.

3.2.2 Pictures

Some pictures illustrating locomotion and recon�guration tasks using the
M-TRAN robot are included in the appendix C.

3.3 Simulator

For this work, a simulator capable of describing the structure and movements
of an M-TRAN robot was developed. This simulator was implemented using
a library for the simulation of rigid body physics, [ODE]. This means that
even though the research was done on simulations, those simulations are
relatively realistic, at least respecting gravity, the mass of bodies, elastic
collisions, forces that interact between moving bodies, motor torques, etc.

The implemented simulator was designed with the intention of presenting
the results in a as realistic as possible way. Therefore, the visualization cycle
is an essential part of the simulation cycle, and the whole simulation takes
place in �normal� time (by �normal� time we mean that the simulation time
ratio is approximately 1 � or that 1 simulation second takes about 1 second
to simulate).

The simulator was developed in a way that allows to work with robots
that are composed by an arbitrary number of modules and con�gurations, as
well as using di�erent action-selection policies.

3.3.1 Implementation

Structure

The simulator was designed on a modular basis. This was so it can be
easily changed and extended. The architecture is based on the following
components:

• Simulation engine

• Robot

• Brain
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• Con�guration

• Scene description

The Simulation engine is the simulator core. This component implements
the simulation algorithm and handles the event processing and visualization
of the simulation.

The Robot component describes the structure of the simulated robot. A
robot is composed of modules, which in turn are composed of two blocks
and a link. The link component contains two motors, which control the
block's movements. The structure is the same as the structure of the physical
implementation of the M-TRAN modules.

The brain provides all the �intelligence�-related functionality. It is in this
component where the action-selection policy and the learning algorithm are
implemented.

The con�guration and scene description components are both text �les
used for con�guring each experiment. The con�guration �le de�nes the val-
ues of the units used to describe the robot, the environment, the interacting
forces, etc. while the scene description �le details the components that con-
form an experiment: the objects found in the simulated environment, like
walls and the ground, and objects that form an active part in simulation,
that is, the robots (it is possible to have more than one active robot). This
�le also describes the type of brain used (and with that, the used policy), as
well as the modules that form each robot, and their initial con�guration.

Learning policies

In order to implement the policies used during the learning phase of the per-
formed experiments, an ε-greedy policy was used. This type of policy allows
to combine stages of exploration with stages of knowledge exploitation. In
order to reduce the amount of exploration as time increases, the ε value was
modi�ed according to a linear-decreasing function. This makes the explo-
ration impact to be high on early stages of the experiment but lessening it
as time passes by, e�ectively making the most impact to be due to actions
decided upon the gained knowledge.

On the other hand, in order to be able to compare the e�ectiveness of
the policies obtained by the learning algorithm, we also implemented a fully
random policy and a policy that can reproduce a prede�ned action sequence.

To simplify the task of obtaining a policy by hand (in order to be able to
compare it with the learned policies), we implemented a brain that is able
to learn from a prede�ned action sequence. Using this brain, it is possible
to actively teach the robot the desired behaviour. This constitutes a case
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for supervised learning, that allows to learn a policy able to reproduce these
prede�ned actions using just a few examples. This mechanism can be used,
for example, to derive a policy for circular motion policy just form the actions
needed to make a wheel-like con�gured robot make one complete turn.

Connection mechanism

In order to be able to simulate dockings, alignment and proximity conditions
between modules were analyzed. If two modules are to dock with each other,
and they are aligned and positioned in such a way that the coupling can
take place, the simulator just takes the docking for successfully performed,
without having to speci�cally simulate the full connection mechanism.

The conditions used to evaluate the docking viability resemble more the
conditions required by the M-TRAN III robot, with it's mechanical connec-
tion mechanism than to the conditions required by the magnetic mechanism
used by it's predecessors. This is due to the fact that the used physical simu-
lation library doesn't provide the means to simulate magnetic properties (see
3.3.3).

In order to determine if coupling is feasible, the minimal distances be-
tween 4 points symmetrically located around the geometrical center of each
connection surface are established. These points correspond to the positions
of the holes and latches of the M-TRAN III connection mechanism. If the
distance between each of the points in one of the connection surfaces and the
points of the other module's connection surface do not cross a certain thresh-
old, then the participating module's surfaces are considered to be correctly
aligned and at a su�ciently small distance for the coupling to be successfully
performed.

Once the modules have been coupled, the forces that interact to maintain
the modules attached together allow for a slight misalignment to be possi-
ble. Nevertheless, any misalignment is automatically �xed by the simulation
process.

3.3.2 Problems encountered and their solutions

During the experiments performed using the simulator, several problems were
found. Next we will detail each one of them, along with the solution used to
overcome them.
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Tuning of the used units

To achieve a simulation as realistic as possible, the mass and size values for
the modules and torque for the motors were de�ned as they were speci�ed
in several papers about the M-TRAN robot [Mur02, Kur02]. The M-TRAN
robot research team was contacted by email in order to con�rm these values.

The actual values used initially were:

Measure Value Unit Notes
mass 400 g full module
distance 60 mm side of a module
torque 1.9 Nm
gravity 9.81 m/s
time 1 sec.

Table 3.1: Initial values for the di�erent units used during simulations.

These values couldn't be used directly as they were given, however, due to
a limitation of the used physics simulation library. The limitation was that in
order for the simulation to be as stable as possible, according to the library's
documentation, it was suggested to adjust the units so that they would be
within the 0.1 − 10.0 range. Even after scaling all units (mass, distance,
time, gravity, torque) consistently in order to ful�l this last requirement,
simulations would not turn out satisfactory, because they would not �look�
realistic. Therefore it was necessary to adjust some values by hand so that
the simulations would look more realistic.

Resolution method for the equation system associated to the phys-
ical system

The physical simulation library used provides two methods for solving the
equation system associated to the physical system. One of these methods,
named WorldStep, uses a �big matrix� approach, trying to solve the the as-
sociated matrix in a traditional way (by calculating the inverse matrix). The
other method, named QuickStep, uses an iterative algorithm to solve that
matrix. The former method (WorldStep) uses a variation of the Dantzig
method, also known as SIMPLEX, while the latter (QuickStep) uses an iter-
ative algorithm that progressively relaxes the equation system's restrictions
until it can be solved.

While the �rst approach produces more exact results (and thus nearer
to the reality), it is highly sensitive to situations in which the associated
matrix is near singular. In those cases, the simulation turns unstable (like in
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numerical instability, meaning that the physical system tends to diverge as
time passes, instead of converging to a stable state), producing unpredictable
behaviours (that can be seen in the simulation as �explosions�, or very strong
collisions between the di�erent simulated components, making each one to be
propelled into a di�erent direction at a great speed). The second approach
is faster than the �rst and is not so sensible to singular matrices, but does
not produce as precise results.

In this case we decided to use the WorldStep method, because the sen-
sitivity towards singular-like matrices can be reduced by modifying certain
parameters (actually, this is done by relaxing the de�nition of �singularity� as
understood by the library). The library allows to modify a parameter named
CFM (Constraint Force Mixing), that permits relaxing the restrictions im-
posed upon the physical system, therefore simulating amongst other things
spring-like joints or spongy materials. Increasing the value of the CFM pa-
rameter also produces the e�ect of driving the system away from a singular
state.

3.3.3 Limitations

As for the simulator limitations, they can be divided into two categories: the
limitations due to the design and implementation of the simulator, and the
limitations due the used libraries.

Limitations due to the simulator's design

The simulator was designed so that it should be simple to perform di�erent
experiments, but without going all the way into making it a general-purpose
simulator. For this reason, in order to modify certain aspects of the simula-
tion it turns out necessary to modify the source code itself. In spite of this,
the maximum attention was drawn to implement it as generic as possible,
and thus avoid having to modify the source code as much as possible.

The scene description (the environment used for the experiment) and
the robots con�guration (including the initial con�guration for all blocks)
must be speci�ed manually in a con�guration �le. While this simpli�es the
execution of di�erent experiments (one scene description �le per experiment),
de�ning the initial position for each block is a delicate and cumbersome
process, since one tiny misplacement can prevent some blocks from being
correctly attached, and therefore from achieving the robot's desired initial
con�guration.

Since the simulator was designed so that simulations would happen in
�normal� time, the time taken for learning can be quite considerable (it is
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not possible to simulate at accelerated time rates).

Limitations due to the used libraries

The simulator is not able to simulate the connection mechanism implemented
by the M-TRAN robot (in it's I and II versions), because the physics simu-
lation library used (ODE) does not provide magnetic properties simulation
capabilities. However, in order to simulate the docking between modules, we
implemented a �virtual� connection mechanism that just attaches two mod-
ules when the necessary conditions hold for such a connection to be feasible
in reality, without having to simulate the speci�c connection process.

On the other hand, that library also doesn't provide the necessary prim-
itives required to fully describe the physical body structure of the blocks.
Because of this, we were forced to simulate those bodies as cubes, losing
accuracy. This makes the simulation not to be completely realistic. Despite
this, the used approximation is good enough to obtain indicative results for
the robots behaviour.

Having to implement blocks as cubes forced us to disable the collision
detection between the same module's blocks, in order to be able to rotate
those blocks. Figure 3.7 shows how the cubes that represent the blocks collide
while being rotated. Not having disabled collision detection between those
bodies, it wouldn't have been possible to rotate them.

Having disabled the collision detection between the blocks, it was nec-
essary to come up with another way to limit the block's rotation range (if
it would have been possible to simulate the exact physical structure of the
blocks, the collision detection mechanism would have automatically restricted
the rotation range to 180 degrees). In order to restrain the rotation range,
we had to restrict the possible angles the motors could take while they were
set. That is, while �guring out the new desired angle for a motor, the same
was limited so that it would remain in the [−90, 90] range.

3.4 Learning

In order to learn an adequate locomotion or recon�guration policy, we used
Reinforcement Learning implemented by the Q-learning algorithm.

3.4.1 Reinforcement Learning

Reinforcement Learning covers a problem class within the spectrum of Ma-
chine Learning, in which an agent must explore an environment where it has
to perceive it's own state, and can perform actions in order to modify it.



CHAPTER 3. HYPOTHESIS, MATERIALS AND METHODS 45

Figure 3.7: Real module structure (top) and simulated structure (bottom)
visualization.

Normally, it is possible to formulate the environment through a Finite
State Markov Decision Process (MDP), and the reinforcement learning al-
gorithms used in this context are strongly related to dynamic programming
techniques.

Reinforcement Learning Elements

Besides an agent and an environment, it is possible to identify three main
elements in a Reinforcement Learning system: a policy, a reward function
and a value function.

The policy de�nes the agent's behaviour at each moment (it is basically
a relation between the states perceived by the agent and the possible actions
to be performed in each state). Policy representations range from simple
structures like lookup tables to complex processes the require a vast amount
of computation.

The reward function de�nes the learning problem's goal. This is a func-
tion that assigns a numerical value to each possible tuple sas′, indicating the
inherent convenience to perform an action a while being on a state s and
evolving to a state s′. The goal of a Reinforcement Learning agent is to max-
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imize the long-term sum of the obtained rewards. The reward function must
not be altered by the agent, since it represents the intrinsic characteristics of
the problem at hand. Nevertheless it can be used to modify the used policy:
whenever an action produces a low (or negative) reward, the policy can be
modi�ed so that that action is not chosen again in the future.

While the reward function tells which actions and states are �good� in
short-term, the value function speci�es the long-term optimal states. The
value of a state is the total reward an agent can expect to accumulate starting
from that state.

Reinforcement Learning Problem Formalization

Within the paradigm of Reinforcement Learning, the agent interacts with the
environment at discrete time intervals t = 0, 1, 2, 3, . . .. At each time instant
t, the agent receives an environmental state representation st ∈ S, where S is
the set of possible states, and selects an action a ∈ A(st), where A(st) is the
set of possible actions for state st. At the next time interval, as part of the
consequences of the performed action, the agent receives a reward rt+1 ∈ R,
and perceives a new state st+1. This interaction is shown in �gure 3.8.

Figure 3.8: Agent-Environment interaction diagram for a Reinforcement
Learning problem.

To determine the actions to perform, the agent uses a policy that relates
each state to the best possible actions to be performed at that state. The
Reinforcement Learning algorithms allow to obtain the optimal policy that
maximizes the total accumulated reward.
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Reinforcement Learning Algorithms

The Reinforcement Learning technique di�ers from supervised learning tech-
niques by the fact that in the former the �correct� solutions are never spec-
i�ed, nor the �erroneous� actions explicitly corrected. The main focus of
this technique is on the �on-line� performance, that involves �nding a bal-
ance between exploration (trying out non-executed or less executed actions),
and exploitation (of the acquired knowledge). The exploration-exploitation
dichotomy has been studied thoroughly before, through problems like the
n-armed bandit [Sut98] for example.

Thus, Reinforcement Learning is particularly well adapted to problems
in which it is necessary to �nd a balance between immediate and long-term
rewards. This technique has been successfully applied for the resolution
of several problems, including robot control, elevator programming [Cri98],
telecommunications [Kum98], backgammon [Tes95] and chess [Bax97].

Once the reward function has been de�ned, it is necessary to determine
the algorithm used for �nding the policy that maximizes the reward. There
are mainly two approaches for that: the value-function method, and the
direct approach.

The direct approach involves two steps:

a) For each possible policy, gather all rewards obtained by using that
policy

b) Choose the policy that produces the maximum expected reward

This approach has basically two problems: on one hand, the amount of
possible policies can be extremely large, or even in�nite. On the other hand,
the rewards might be stochastic, in which case it might be necessary to gather
a very large amount of samples in order to precisely estimate the expected
value for each policy. In spite of that, this approach has been used as a basis
for the algorithms commonly found in evolutionary robotics [Nol98].

If we assume a certain structure in the problem that we are trying to solve,
some of these inconvenients can be bypassed. The value-function approach
is based on the concept that the rewards obtained by using one policy can
a�ect the estimates made for another policy. In this approach the expected
value when using a policy π is estimated, starting from a state s

V π(s) = Eπ {Rt|st = s} = Eπ

{
∞∑
k=0

γkrt+k+1

∣∣∣∣∣st = s

}
or, estimating the expected value when taking an action a in a state s

and then continuing according to a policy π
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Qπ(s, a) = Eπ {Rt|st = s, at = a} = Eπ

{
∞∑
k=0

γkrt+k+1

∣∣∣∣∣st = s, at = a

}
.

Given a function Q for the optimal policy, it is possible to select the
optimal actions just by choosing those actions that present a maximal value
for each state s. In order to produce the same result with the function V , it is
necessary to have a model of the environment, in the form of the probabilities
P (s′|s, a), that allows to calculate Q according to the equation

Q(s, a) =
∑
s′

V (s′)P (s′|s, a) (3.1)

or, one of the so called �Actor-Critic� methods [Sut98] can be used, in
which the model is split into two parts: the critic, that maintains information
about the estimated value of the V function, and the actor, that is responsible
for choosing the appropriate actions for each state.

Expanding the equation that de�nes function V π, we obtain:

V π(s) = Eπ {Rt|st = s}

= Eπ

{
∞∑
k=0

γkrt+k+1

∣∣∣∣∣st = s

}

= Eπ

{
rt+1 + γ

∞∑
k=0

γkrt+k+2

∣∣∣∣∣st = s

}
= Eπ {rt+1 + γV π(st+1)|st = s}

Given a policy π, estimating Eπ {Rt|st = s} for γ = 0 is trivial, since we
just have to take the average of the immediate rewards. The easiest way to
do this for γ > 0 is to average the total reward, after each state is reached.
This Monte Carlo style sampling requires however, that the associated MDP
has terminal states.

Therefore, performing this estimation for γ > 0 in the general case is not
obvious. However, it is actually simple, if it is noted that the expected value
of R is a Bellman recursive function:

Eπ {Rt|st} = rt + γEπ {Rt+1|st+1} (3.2)

Replacing those expected values for V π(st) y V π(st+1), it is possible to
derive the temporal di�erence learning algorithm TD(0), whose update rule
is described by
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V (st)← V (st) + α[rt+1 + γV (st+1)− V (st)].

In it's simplest case, the set of states and actions are both discrete, and
it's possible to maintain an estimate for each state-action pair. Other similar
methods are SARSA and Q-Learning.

The aforementioned methods all converge to the correct estimate for a
given policy, but they can also be used to determine the optimal policy. Nor-
mally, this is done by following a policy π that is derived from the estimated
values at each time step (for example, by choosing most of the time the ac-
tions associated with a maximal Q value, but occasionally taking random
actions, in order to explore other possible actions).

Q-Learning

Q-Learning [Wat89], as we saw in the previous section, is a Reinforcement
Learning algorithm that uses the information associated to a state s′ (i.e.
Q(s′, a′)) to enhance the estimate Q(s, a), by executing an action a when on
a state s, following a give policy π. An important bene�t of this algorithm
resides in it's capacity to compare the expected reward for each of the possible
actions, without having to have a model of the environment (see equation
3.1).

The central mechanism of this algorithm is based on the simplicity of the
estimate updating rule. For each state s ∈ S, and for each action a ∈ A, the
expected reward value is calculated according to the equation

Q(st, at)← Q(st, at) + α[rt+1 + γmaxaQ(st+1, a)−Q(st, at)] (3.3)

where, rt+1 is the reward obtained after performing the action at, when
on a state st; α is the convergence rate (also known as learning rate), such
that 0 < α < 1 and γ is the discount rate, so that 0 < γ < 1.

The so learned state-action function Q directly approximates Q∗, the
optimal state-action function, independently of the policy used. This fact
radically simpli�es the algorithm's analysis. The policy is still used to deter-
mine the actions to perform at each state, and only one requisite is necessary
to guarantee the correct convergence: every state-action pair must be contin-
ually updated. This means that while a minimum of exploration is performed
by the used policy, the algorithm guarantees that theQ function will converge
towards Q∗.

This algorithm can be expressed as:
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1. Initialize Q(s, a) in some arbitrary way

2. Repeat for each episode

(a) Initialize s

(b) Repeat for each step (of the episode)

i. Choose a for s, using aQ derived policy (for example ε-greedy)

ii. Perform the action a, and obtain the reward r and the new
state s′

iii. Q(s, a)← Q(s, a) + α[r + γmaxa′Q(s′, a′)−Q(s, a)]

iv. s← s′

(c) until s is a terminal state

For the implementation of this algorithm some classes were de�ned: Pol-
icy, ActionValueFunction and RLBrain. RLBrain encapsulates the whole
learning behaviour. In this class we de�ne the best possible action a given
a state s, through the used policy (implemented in the Policy class). To
determine this, the policy has access to the information provided by the Q
function, implemented by the ActionValueFunction class. This mean that
Policy implements a policy derived from Q. Once the action a has been
obtained and executed, in RLBrain we obtain the reward associated to that
action (and state), and call a method that updates the Q table.

The halting condition, determined as �s is a terminal state� in the pre-
vious schema is de�ned in RLBrain (or any of it's derived classes), allowing
that condition to depend on the performed experiment (this is also valid for
the reward function, which in turn depends on the RLBrain derived class
that was used for the performed experiment).



Chapter 4

Experimentation

In this chapter we analyze the impact of the Reinforcement Learning tech-
nique when applied to solving locomotion and recon�guration tasks in M-
TRAN robots.

The experiments will be performed in episodes. Unless noted, an episode
is considered to be the execution of a simulation, according to the following
de�nition:

Simulation The execution of the simulator program until a termination
condition is met. Termination conditions depend upon the type of
Brain (see 3.3.1) used. Some possible termination conditions are: the
amount of executed actions; the evaluation of a condition, like for ex-
ample, �distance to target is less than a critical value�.

4.1 Locomotion

First, an experiment is performed with the aim of:

1. validating the developed simulator, by studying a real-world case

2. consolidating the methodology and knowledge needed to perform a
learning experience with Self-Recon�gurable Modular Robots using the
developed simulator

4.1.1 Experiment 1: Locomotion in a minimal-con�guration
robot

We try to solve a simple locomotion task, in a simple environment. The
simulated environment has four walls, and naturally, a �oor. The latter is

51
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uniformly �at, and the environment is free of obstacles (not counting the
walls). The robot used for this experiment consists of just one module.

For the learning task we use the Q-Learning algorithm, as it was presented
in section 3.4.1.

Problem analysis

Since the experiment takes place in a simulated environment, but trying to
maintain the maximum possible correlation to reality, it is necessary to avoid
certain �bene�ts� of this kind of environments; one of them is the possibility
of knowing the robot's position in absolute coordinates. Since a M-TRAN
robot does not posses this ability, we have to �nd another way to determine
the robots advance.

As was seen in section 3.4.1, the used algorithm involves the concepts:

• State

• Action

• Reward

In the case of State and Action, it is necessary to take into account that
we try to �nd a de�nition of those concepts that keeps the amount of �state-
action� pairs bounded. This is because the learning capacity and velocity
depend directly on the size of the sets determined by these variables.

State

It is necessary to draw the di�erence between the notion of state as in the
robot's perception capacities and as in the set of values needed for the learn-
ing process. For example, even if the robot is able to determine the current
date, this data will be useless for learning locomotion. So, the date, even
though it is part of the sensory state of the robot (because it can perceive
this stimulus), does not belong to the set of variables that describe the state
used for learning, since it doesn't add any information that helps to achieve
the robot's goal.

Generally speaking, we can say that the state for the learning process is
a subset of the sensory state of the robot.

Action

According to the stated goal, actions that the learning algorithm has to
consider are strictly related to the robot's movement in the experimentation
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environment. Since the robot has only one module, the available actions are
restricted to those that a module can perform; these actions are limited to
the motor's movements of the blocks that conform a module.

We try to simulate servo-like motors, that are controlled by specifying
the desired target angle. Therefore, actions consists just of the angles that
we want those motors to be in at each time step. In order for the learning
task to be computationally feasible it is best to have as little angle choices as
possible, while allowing all necessary angles for the robot to be able to move
around the environment.

Reward

According to the stated goal, the reward function must favour those cases in
which the robot moves in the desired direction, and penalize those case in
which the robot doesn't reduce it's distance to the goal. It is important to
try to avoid situations in which the robot might become immobilized.

Proposed solution

As was seen previously, it's necessary to avoid using absolute positioning.
Therefore it's possible to put a light or radio source in the environment, and
give the robot sensors that allow it to establish if it's getting closer or not to
the emitting source, without having to know it's absolute position.

Given the mobility limitations of this kind of robot (being constituted by
only one module limits it to a unidirectional movement), it must be initially
aligned to the emitting source, in order to maximize the possibilities of the
learning process.

Under such circumstances, the robots objective consists in moving in such
a way as to minimize the distance between itself and the emitting source.

In order to implement this solution, it's necessary to de�ne:

• Where to put the sensors?

• How many sensors to use per module?

• How to encode the sensor's values?

After analyzing some possibilities, it was decided to implement the solu-
tion described next.
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Sensors (stimulus)

To determine the robot's advance, sensors are located in the mass center of
each block. For simplicity's sake, sensors are omnidirectional (they measure
the straight-line distance to the emitting source).

Sensors have a de�ned maximum sensing range, and divide the measure-
ment spectrum into a �nite amount of identical and equally-sized intervals.
The sensor's value is determined according to the interval detected. The
function used to calculate this value is given by equation 4.1.

v = discretize(|ps − pf |) (4.1)

where

discretize(x) =

{
0 if x ≥ ranges

b(1− x
ranges

)× levelssc otherwise ,

ps = sensor's position ,

pf = emitting source's position ,

ranges = maximum sensing distance ,

levelss = number of the sensor's discretization levels .

Even though the robot's and emitting source's positions are used in order
to calculate the sensor's value, this data is encapsulated by the sensor and
therefore constitutes an �implementation detail� of the sensor. The robot
does never realize this information, but only uses the value provided by the
sensor.

Robot (state)

The robot's state (according to it's perception capacity) is formed by 4 com-
ponents. The robot is able to determine:

• the angle of each of the blocks (this information is provided by the
block's motor encoders)

• the value perceived by each of the sensors located in the blocks

At the same time, the robot also possesses some �virtual sensors�, by
which it can determine:

• �pseudorotation� of each module
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• direction to the emitting source

By �pseudorotation� we understand the value obtained from the relative
position between the blocks that form a module, and that gives an idea of
the module's rotation in space.

The way of calculating this value is given by equation 4.2.

v = pseudorotation(vactive, vpassive) (4.2)

where

vactive = active block's sensor value ,

vpassive = passive block's sensor value ,

pseudorotation(x, y) =


−1 if (x− y) > 0

1 if (x− y) < 0
0 otherwise

.

On the other hand, each module can determine if the emitting source is
closer to it's active or passive block, which determines the direction towards
it must move.

In order to calculate this value, equation 4.3 is used.

v = normalize((dactive + dpassive)× axiss) (4.3)

where

dactive = active block's direction ,

dpassive = passive block's direction ,

axiss = initial block alignment ,

normalize(x) =


1 if x > 1
−1 if x < −1

0 otherwise
.

These values can be obtained according to the following equations:

dblock = map(direction, pblock − pf ) ,
map(f, v) = concatenate(f(head(v)),map(f, tail(v))) ,

direction(x) =


−1 if x > 0

1 if x < 0
0 otherwise

,
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pblock = block's position ,

pf = emitting source's position ,

axiss = normalize(pipassive
− piactive

) ,

piblock
= initial block's position .

where concatenate, head and tail are the list handling primitive functions.
Again, in this case, even though the sensor value calculation involves the

robot's and emitting source's positions, the robot does not have access to
this information, but only to the value indicated by the sensor. If there was
an alternative way of calculating these values, it would be possible to replace
the sensor's implementation without a�ecting the robot's behaviour.

Learning (state)

As was previously seen, the robot's state and the state used for learning (the
state used by the policy in order to determine the action to execute) are not
necessarily the same. For this particular experiment it is necessary to draw
the distinction and de�ne the state used for learning as:

• erobot = emodule

• emodule = [ψ, δ, α, β]

• ψ = �pseudorotation�

Possible values:


−1 active block nearer to the emitting source

0 both blocks equally distant to the emitting source
1 passive block nearer to the emitting source

• δ = direction to emitting source

Possible values:


−1 to the �right� (positive coordinates)

0 parallel to the emitting source
1 to the �left� (negative coordinates)

• α = active block angle

Possible values: -90, 0, +90

• β = passive block angle

Possible values: -90, 0, +90
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This state de�nition allows to distinguish each possible con�guration,
through the angle values of each block. The ψ value gives information about
the module's spatial rotation, which allows to determine which direction is
meant by �forward�, while the δ value gives information if the robot should
move �forward� or �backwards�.

Figure 4.1 shows several examples of possible states.

Active block

Passive block

Emitting source

e = [1,−1, 0, 0]

Active block

Passive block

Emitting source

e = [1,−1,−90, 0]

Active block

Passive block

Emitting source

e = [1,−1, 0,−90]

Active block

Passive block

Emitting source

e = [−1,−1,−90, 90]

Active block

Passive block

Emitting source

e = [1, 1,−90, 90]

Figure 4.1: Possible states of a robot

It's worth noting that the sensor values don't belong to the learning state.
This is because the robot's position (as it's distance to the emitting source)
doesn't a�ect the choice of the action to perform. The robot's position (de-
rived from the sensor values) is used to determine the robot's advance and
calculate the reward associated to each performed action.



CHAPTER 4. EXPERIMENTATION 58

Learning (actions)

The actions that a robot can perform are de�ned as a list of movements that
will be executed simultaneously. Each movement corresponds to activating
one motor. One action can involve one or two movements (since the robot is
formed by just one module, the total amount of motors is 2).

According to this, an action is formally described by:

• a = m1 ∨ a = m1,m2

• mi = module|block |angle

• module is the number of the module to which the motor belongs (start-
ing from 0). In this case, since there is only one possible module, this
value is always 0. The de�nition is given in general form, because in
later experiments (that involve more than one module) the same de�-
nition is used.

• block is A if the motor belongs to the active block or P if it belongs to
the passive block.

• angle is -90 or +90. In the angle de�nition for actions, the angle is
taken to be relative, and not like the angle describing the state of a
module which is given as an absolute value. Therefore, in this case 0 is
not a valid value.

Given that the actions a robot conformed by only one module can perform
are few, they can be explicitly described. According to the values previously
indicated, all possible actions that a module can perform are:

• 0|A|-90

• 0|A|+90

• 0|P|-90

• 0|P|+90

• 0|A|-90,0|P|-90

• 0|A|-90,0|P|+90

• 0|A|+90,0|P|-90

• 0|A|+90,0|P|+90
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This de�nition choice for action is because it corresponds to the minimum
indispensable data required to modify the robot's con�guration (the way the
robot has to move around), and therefore it's state. The choice of angles
used is due to the fact that these angles (-90, +90) are enough to allow the
robot to perform locomotion (even if it's rudimentary) and thus, adding more
values would unnecessarily increase the state-action space size.

Learning (reward)

The reward function that was used is de�ned as:

reward(st, at) =

{
−5 if the robot didn't change it's state1

distance(st, at) otherwise

where distance(st, at) is the distance travelled during the last action. This
value depends on movement the robot did during the last action, but it can
be considered to live in the [−1, 1] range.

The penalty given in the case of not changing state is used to disfavour
actions that can potentially lead to immobility states.

Using this reward function, the actions that produce a movement in the
direction of the emitting source are rewarded in a proportional way to the
distance advanced, while the actions that produce a movement in the opposite
direction are accordingly penalized.

Results

Initially, we analyzed the impact of the di�erent variables involved in the
learning algorithm. Three variables were selected for further study:

• alpha and gamma are parameters of the Q-Learning algorithm, that
de�ne the impact that actions have over future decisions

• epsilon is a parameter of the policy used to determine the actions
to perform. In an ε-greedy policy, epsilon de�nes the proportion of
randomly-chosen actions.

Three series of 90 simulations each were made varying the values of alpha,
epsilon and gamma, in order to study which one of them would have the
biggest impact on the obtained result.

The variables observed for each simulation were:
1in this case, the analyzed state is the real state of the robot, not the state used for

learning. In order to determine this fact we compare the robot's state before and after
performing an action.
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• advanced distance

Distance that the robot moved in the direction of the emitting source.

• travelled distance

Total travelled distance (every movement is taken into account, even
those that make it go backwards).

• executed actions

Number of actions the robot executed before reaching it's goal state
(with a maximum of 200 actions).

In order to minimize the impact of the result variance, 10 runs were
performed with each parameter set, and the results were evaluated using the
average of the obtained values.

During these experiments the aim was not set in �nding the optimal
values for these variables, but to present an overview about the factors that
in�uence the studied problem. Due to this, the performed analysis is not
exhaustive and was only used to discover some interesting aspects about the
nature of the problem at hand.

By examining the obtained results (that are included in Appendix B), it
can be seen that the learning process wasn't successful in those cases where
ε ≥ 0.6, while the cases in which the learning process was faster were when
the latter took values lesser than 0.3. These results also suggest that the
most convenient values for α and γ are between 0.6 and 0.9.

After this, another three series of 90 simulations each were performed in
order to compare the obtained policies. These simulations were performed
by just evaluating the policies obtained during the learning phase.

Besides the data analyzed during learning, in order to compare the di�er-
ent policies, we de�ned a measure of performance. This value is calculated
according to equation 4.4.

performance =
dadvanced
dtravelled

× k

n
(4.4)

where

dadvanced = advanced distance ,

dtravelled = total travelled distance ,

k = number of required actions2 ,

n = number of executed actions .
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Examining this equation, it can be seen that the ratio

dadvanced
dtravelled

gives a metric about the advance velocity of the robot (i.e. if the per-
formed actions turned out to be mostly in the direction of the emitting
source), while the ratio

k

n

shows the average advance velocity generated by the decisions taken by
the robot.

Therefore, the best policies must show a high performance value (close
to 1). From this, we can conclude that in order to �nd optimal policies it's
necessary to maximize the value of the performance variable.

The obtained results are shown in table B (included in the Appendix B).
From these results, some graphics can be extracted (�gures 4.2, 4.3, 4.4)

that explain the variance of performance in relation to each parameter.
Finally, in table 4.1.1, these results are compared with the values obtained

by executing an arbitrary policy (manually generated) and a completely ran-
dom policy.

Policy Advanced Travelled Actions Performance
Distance Distance Executed

Learninga 29.50 62.00 56 0.35310
Learningb 22.50 65.50 148 0.12850
Random 3.45 153.30 201 0.00391
Arbitrary 29.50 56.70 56 0.35599
a The values for the best learned policy are shown
b The values for the worst learned policy are shown

Table 4.1: Performance comparison for the learned policies
versus the control policies

In this table it can appreciated that all the obtained policies performed
better than the random policy, and even though they weren't as performing
as the manually constructed policy, this is because due to the simplicity (and

2we consider this value to be the minimum amount of actions required to reach the
goal state, i.e. the amount of actions performed by the optimal policy
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Figure 4.2: Performance of the policies obtained in relation to the parameter
α, for ε = γ = 0.5.
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Figure 4.3: Performance of the policies obtained in relation to the parameter
ε, for α = γ = 0.5.
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Figure 4.4: Performance of the policies obtained in relation to the parameter
γ, for α = ε = 0.5.

thus it's reduced size) of the state and action space, it is easy to manually de-
termine an optimal policy. However, in the case that the robot would consist
of more modules and/or could perform a greater number of actions, �nding
an optimal policy manually wouldn't be as easy. In those circumstances,
having a learning algorithm that provides close to optimal policies would be
highly esteemed.

By examining the obtained results, it's possible to see that the optimal
values for α are at the extremes of the spectrum. In the case of using lower-
end values the impact the actions performed would have over the learning
process would be minimized (in an extreme case, α = 0 would mean no
learning at all), while by using values in the upper-end of the spectrum
would mean to base the decisions almost entirely on next state-action pair
(i.e. Q(s′, a′)) estimation in order to determine the next action to execute;
this is somehow related to not learning, since a high value for α would make
the robot �forget what it learned at each time step�.

The value for γ suggested by the results is expectable, since it represents
a balance between using recent experience and �forgetting� long-ago acquired
experience (would that not be the case, experience would not be taking into
account at all � γ too low � or �mistakes would not be forgotten� � γ too
high).
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The value obtained for the initial ε is however interesting. The best results
were obtained when ε showed a relatively high value (ε = 0.7). However, in
many case in which ε had a value in it's upper-end range (ε > 0.6), the robot
couldn't reach the goal state during it's learning phase. This means that even
though the best policies involve a high degree of exploration, which actually
makes sense, since it's necessary to make a certain amount of exploration
in order to learn an optimal policy, a high proportion of exploration can
also drive to underuse the acquired experience, thus producing a suboptimal
performance. The fact that the best policies found showed a high value for
this variable is due to the bounded size of the state space, which allows for
an initial high exploration to rapidly �nd the best actions for each state (in
the performed simulations, exploration is strong at the beginning, but then
decreases as time goes by).

Conclusions

In the light of the obtained results, it can be veri�ed that it is feasible to
perform learning tasks (particularly using Reinforcement Learning) with Self-
Recon�gurable Modular Robots like the M-TRAN robot.

It was shown that the developed simulator ful�lls the necessary require-
ments to be able to perform this kind of experiments, and that like in other
similar experiments it's necessary to carefully de�ne the learning algorithm
related aspects (state, action, reward function).

The obtained results are consistent with the existing knowledge about
Reinforcement Learning. That is, in regard to the studied problem, the values
for the analyzed variables that produced the best results, are coherent.

Finally, even though the proposed locomotion task was simple, the success
obtained from the performed simulations allows us to suggest that using the
Reinforcement Learning technique for the locomotion task in M-TRAN Self-
Recon�gurable Modular Robots has a very real and important utility.

4.2 Recon�guration

In this case we tried to verify an M-TRAN's robot capacity for self-recon�guration
in order to obtain behaviours for the recon�guration task using Reinforce-
ment Learning.

Next we will describe the performed experiments.



CHAPTER 4. EXPERIMENTATION 65

4.2.1 Experiment 2: Basic Recon�guration

In this experiment we worked with a robot composed of three modules. The
initial con�guration was linear, meaning that all modules where aligned as
is shown in �gure 4.5.

Figure 4.5: Linear con�guration for a three module M-TRAN robot, corre-
sponding to the initial state for the experiment number 2

The goal of this experiment is that the robot achieves the con�guration
shown in �gure 4.6.

Figure 4.6: Final con�guration for a three module M-TRAN robot for the
experiment number 2

The robot's state is represented by a list containing each module's state.
Likewise, a module's state is represented by a pair of angles, corresponding
to the module's motors, that is

state = [statemodule1
, statemodule2

, statemodule3
] , (4.5)

statemodulei
= 'αi::βi' .

According to this representation, the initial and �nal states of the exper-
iment are
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stateinitial = ['0.0::0.0', '0.0::0.0', '0.0::0.0']

statefinal = ['0.0::-90.0', '-90.0::90.0', '90.0::-90.0']

The actions the robot can perform are only those given by the angles of
the di�erent motors. These actions are de�ned by

action = 'module|block|angle' , (4.6)

module = 0 ∨ 1 ∨ 2 ,

block = A ∨ P ,

angle = -90 ∨+90 .

The actions de�ned by this equation are called �simple actions�, because
each action allows to modify the angle of only one motor. In future experi-
ments, �complex� actions were also used to modify more than one motor at
the same time.

The used reward function is de�ned as:

reward =

{
1 if the �nal state is reached
0 otherwise

(4.7)

Results

After performing 13 learning episodes, we obtained a policy that solved the
proposed task. As can be seen in �gure 4.7, during the learning phase, the
number of performed actions in each episode tends to diminish. This is
because the robot is using the acquired experience (also meaning, it learns).
However, it can also be seen that in certain episodes the robot needs more
actions than in previous episodes to reach the goal state. Even though this
might suggest that the robot is not using previous experience, this is actually
due to some exploration being done every now and then. Thanks to this
exploration phases the robot is able to determine which states are going to
lead to the �nal state. At the same time, this makes it have to try out more
actions in order to reach those states.

Another aspect that can be observed in this �gure is a curve named �global
tendency�, that is calculated as a linear approximation of the data, using the
least mean squares method.

In �gure 4.8 it can be seen that by using the obtained policy, the same
amount of actions are always required. This shows that the policy is stable,
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Figure 4.7: Number of actions executed before reaching the �nal state dur-
ing the learning phase, in order to obtain a recon�guration policy during
experiment number 2

meaning that in every validation instance, the robot behaves in the same way.
Another noteworthy aspect is the di�erence between the number of actions
performed during the learning phase and during the evaluation of the learned
policy. It's noteworthy that even though a considerable amount of actions
is necessary during the learning phase (between 100 and 1000 actions were
executed), when evaluating the learned policy just 5 actions are needed to
reach the �nal state. The di�erence between those values shows that after
performing a number of episodes enough to determine a stable policy, the
latter shows to be highly e�cient.

Discussion

As the obtained results show, the �rst attempt to learn a policy for solving
a recon�guration task was successful. Even though the proposed task was a
simple one (the target con�guration was easily reachable), this �rst success
motivates further and more complex experiments.

4.2.2 Experiment 3: From linear to circular con�gura-
tion, using simple actions

Once we veri�ed that a simple recon�guration task was possible to solve
using Reinforcement Learning, we modi�ed the target con�guration in order
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Figure 4.8: Number of actions executed before reaching the �nal state, using
the learned policy during experiment number 2

to test this technique with a di�erent con�guration. In this case, we started
from the same initial con�guration as in the experiment 2, and tried to reach
a �circular� con�guration, as shown in �gure 4.9.

Figure 4.9: Final circular con�guration for a 3-module robot, used during
experiment 3

According to the state speci�cation given for experiment 2 (which remains
the same in this experiment), the target con�guration, as shown in �gure 4.9
can be expressed as

statefinal = ['-90.0::90.0', '0.0::90.0', '-90.0::0.0']
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In this experiment we used the same de�nition for actions and the same
reward function as in experiment 2.

Results

13 learning episodes were performed, at the end of which we evaluated the
learned policy. The results of these �rst 13 episodes are shown in �gures 4.10
and 4.11.

In the case of �gure 4.10, the amount of performed actions before reaching
the target con�guration is shown. It's worth noting that the global tendency
is decreasing, which like in the previous experiment, indicates that the robot
is learning. The increase peaks are due to the exploration phases (as in the
previous case). Another thing to note is that the greater complexity of the
target con�guration causes a greater number of actions to be executed (on
average) in order to reach the target con�guration than during experiment
2.

In �gure 4.11 the amount of actions needed to reach the target con�g-
uration is shown according to the learned policy. In this case, it can be
appreciated that the obtained policy is still unstable (in the sense that it
doesn't always determines the same actions). This is because there hasn't
been enough exploration in order to determine the optimal action sequence.
Therefore, in some states more than one action have a maximal Q value as-
sociated, which produces that it's not possible to deterministically select the
optimal action for those states.

Because of this, more learning episodes were performed. Learning and
evaluation episodes were performed alternately until a stable policy was found
(meaning that it executes always the same actions).

Results for these episodes are shown in �gures 4.12 - 4.15.
In �gures 4.12 and 4.14 it can be seen how the amount of required ac-

tions decreases as more learning episodes are performed, �nally converging
to a stable value. This indicates that the robot is learning, e�ectively using
previous experience.

On the other hand, in �gure 4.13 it can be seen that after 17 episodes
a stable policy was still not found, but that, according to �gure 4.15, after
19 episodes a stable and highly e�cient (regarding the di�erence between
the number of actions performed during learning and evaluation) policy is
e�ectively found.
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Figure 4.10: Number of actions performed before reaching the target con�g-
uration, during the learning phase (13 episodes) for a recon�guration task
policy for experiment 3
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Figure 4.11: Number of actions performed before reaching the target con�g-
uration, using the learned policy (after 13 episodes) for experiment 3
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Figure 4.12: Number of actions executed before reaching the target con�g-
uration, during the learning phase (17 episodes) of a recon�guration task
policy for experiment 3
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Figure 4.13: Number of actions executed before reaching the target con�gu-
ration, using the learned policy (after 17 episodes) for experiment 3



CHAPTER 4. EXPERIMENTATION 72

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20

A
ct

io
ns

Episodes

Data
Global tendency

Figure 4.14: Number of actions executed before reaching the target con�g-
uration, during the learning phase (19 episodes) of a recon�guration task
policy for experiment 3
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Figure 4.15: Number of actions executed before reaching the target con�gu-
ration, using the learned policy (after 19 episodes) for experiment 3
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Discussion

As can be observed, the fact that as more learning episodes are performed the
number of actions executed before reaching the target con�guration decreases
(due to learning) still holds. Likewise, it can be observed how after a cer-
tain amount of episodes, the learned policy stabilizes on a minimal required
number of actions.

4.2.3 Experiment 4: From linear to circular structure,
using complex actions

In this case, we introduce a variation respect the previous experiment. In-
stead of using �simple� actions, we rede�ned the possible actions so that
several motors can be simultaneously activated. The main reason for this
change is to evaluate if by being able to simultaneously activate several mo-
tors the �nal policy results more e�cient.

�Complex� actions are thus de�ned as

action = 'movement' ∨ 'movement; action'3 , (4.8)

movement = simple action, according to equation 4.6 .

This de�nition is complemented by two restrictions:

1. Within an action, each movement must refer to a di�erent motor

2. There can be a maximum of 6 movements in a complex action (or
generally speaking, the number of motors present in the robot). This
restriction comes from the �rst one.

Results

In this experiment, we evaluated the learned policy after a few episodes
(because we also tried to verify if using complex actions would make the
learning process faster).

The results can be seen in �gures 4.16 - 4.21.

3even though an action is de�ned as a sequence of movements, the order in which
those movements are given doesn't matter; all actions that are permutations of the same
movements are considered to be the same action
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Figure 4.16: Number of actions performed before reaching the target con-
�guration, during the learning phase (3 episodes) of a recon�guration task
policy for experiment 4
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Figure 4.17: Number of actions performed before reaching the target con�g-
uration, using the learned policy after 3 episodes, for experiment 4
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Figure 4.18: Number of actions performed before reaching the target con-
�guration, during the learning phase (7 episodes) of a recon�guration task
policy from experiment 4
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Figure 4.19: Number of actions performed before reaching the target con�g-
uration, using the learned policy after 7 episodes, for experiment 4
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Figure 4.20: Number of actions performed before reaching the target con-
�guration, during the learning phase (13 episodes) of a recon�guration task
policy, for experiment 4
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Figure 4.21: Number of actions performed before reaching the target con�g-
uration, using the learned policy after 13 episodes, for experiment 4
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Discussion

In the �rst �gure it can be seen that the number of actions performed during
the learning phase �uctuates greatly. While this alone does not indicate that
the policy hasn't yet been re�ned enough, if we also take into account the next
�gure (4.17) it can be veri�ed that that is exactly what is happening (since
the obtained policy is unstable). The reason for that is that the number of
learning episodes performed is too little. In the next �gure (corresponding
to the learning phases for 7 episodes), the increasing global tendency still
holds. However, the number of performed actions is on average, much lower
than during the �rst learning episodes on previous experiments. This fact
indicates that the learning process is e�ectively being accelerated by using
complex actions. The obtained policy is however, still unstable (as can be
deduced from �gure 4.19), which indicates that more learning episodes still
have to be performed.

Finally, after 13 learning episodes, a stable policy is obtained (see �gure
4.21). Even though during the learning phase the global tendency is increas-
ing, the increase rate is notably lower than to that shown in �gure 4.18,
which demonstrates that on average term the amount of actions performed
during the latter episodes decreases.

Another factor worth noting is that the amount of actions executed by
the policy decreases (on average) until a stable policy is found (which always
executes the same amount of actions).

Even though the number of actions required by the obtained policy is
not strictly lower than the number of actions required by the policy obtained
in experiment 3, and even though it cannot be a�rmed that the former is
better (or more e�cient) than the latter, the obtained result is good enough,
since the number of episodes required to reach a stable policy is less than in
the case of experiment 3, and the di�erence between the number of actions
those two policies perform is minimal.

4.2.4 Experiment 5: From linear to circular structure,
with docking/undocking and using complex ac-
tions

Having already succeeded in solving a basic recon�guration task, in this ex-
periment we try to complicate the situation by introducing a yet unexplored
aspect of the robot's capacities: coupling between modules. The goal of this
experiment is to reach a similar target con�guration than the one used in the
previous two cases (i.e. starting from a linear con�guration, trying to reach
a circular con�guration), with the di�erence that in this case, the robot will
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have to end with all it's modules attached together, forming a ring.
To achieve this it's necessary to:

1. Modify the de�nition of state, to include coupling between modules

2. Modify the de�nition of action, to allow for modules to dock and undock

In order to be able to introduce changes that a�ect the couplings between
di�erent modules, and learn from this, it's necessary that the state used for
learning describes those couplings. We thus rede�ne the state as

state = (angles, couplings) , (4.9)

angles = robot state according to equation 4.5 ,

couplings = [coupling0, coupling1, . . .]
4 ,

couplingi = (modulea,moduleb, side
5) ,

side = 'bottom' ∨ 'front' ∨ 'rear' .

According to this new state de�nition, the initial and �nal states for this
experiment are:

stateinitial = (['0.0::0.0', '0.0::0.0', '0.0::0.0'],

[(1, 0, 'bottom'), (2, 1, 'bottom')])

statefinal = (['-90.0::90.0', '0.0::90.0', '-90.0::0.0'],

[(1, 0, 'bottom'), (2, 1, 'bottom'), (0, 2, 'bottom')])

To allow docking and undocking between modules, the available actions
are de�ned as

action′ = complex-action ∨ coupling , (4.10)

coupling = 'dock|modulea|moduleb|side7' ∨
'undock|modulea||side7' , (4.11)

complex-action = action as de�ned by equation 4.8 .

By using this new de�nitions for state and action, it is possible that
during an episode the robot falls into a state in which it will be practically

9all coupling permutations are considered as the same. See note regarding to permu-
tations in the de�nition of complex actions (equation 4.8)

5of the a module
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impossible for it to reach the target con�guration. For example, if a module
gets detached, while theoretically it would be possible for it to reattach to
the robot, the conditions that must hold for this to happen are so strict that
the probability for it is quite low.

For this reason, if the robot should �nd itself in such a situation, instead
of allowing it to continue, we opted for aborting the episode, returning a
negative reward. The reward function used for this experiment is given by
the following equation

reward =


1 if the target con�guration is reached
−1 if some module got detached

0 otherwise
(4.12)

Results

43 learning episodes were performed, and every one had to be aborted, with-
out reaching the target con�guration.

Figure 4.22 shows the amount of actions executed during each learning
episode.
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Figure 4.22: Number of actions performed during each learning episode,
before being aborted.
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Discussion

Having introduced the possibility of aborting an episode where the robot
hasn't reached the target con�guration makes it necessary to perform many
more episodes, or to reevaluate the de�nition of episode.

From what can be seen in �gure 4.22, there is a decreasing tendency in
the number of actions performed during each episode, before it gets aborted.
While this tendency might indicate that e�ectively more episodes are needed
in order to reach a stable policy, since every episode was aborted, this corre-
lation might not be true. This comes from the fact that the reward function
assigns rewards at the end of each episode. Therefore, the only information
that can be extracted from an aborted episode is that the series of actions
taken during that episode are not e�ective for reaching the target con�gura-
tion.

4.2.5 Experiment 6: From linear to circular structure,
with docking, no undocking, using simple actions

Because of the results obtained during experiment 5, we modi�ed the def-
initions of action and reward function, in order to avoid the encountered
problems.

In the case of the available actions, we used a similar de�nition to that
given by equation 4.10, but instead of using complex actions, in this case only
simple actions were allowed, and we restricted the possibility of coupling
actions only to the dock action. That means, that we basically simpli�ed
the available actions and avoided the possibility of detaching a module in
order to avoid having to abort episodes. This decision was based on the fact
that it was not necessary to undock any module in order to reach the target
con�guration.

The reward function was de�ned as

reward =

{
−1 if the episode was aborted 6

partialReward otherwise
(4.13)

where partialReward is the function de�ned in table 4.2.
According to this de�nition, the reward function assigns rewards for reach-

ing the target angles con�guration and for reaching the target couplings con-

6even though we just mentioned that the actions were modi�ed in order to avoid having
to abort episodes, having this case contemplated by the reward function doesn't produce
any negative impact, and prevents unforeseen cases in which the episode has to be aborted.
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def partialReward(state, target):

angles, couplings = state

reward = 0

if angles == target[0]:

reward += 1

if couplings == target[1]:

reward += 1

return reward

Table 4.2: De�nition of function partialReward.

�guration, having a maximal value when both parts of the state are correct
(i.e. when the target con�guration has been reached).

Results

The results obtained from the simulations are shown in �gures 4.23 - 4.28.
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Figure 4.23: Number of actions performed before reaching the target con-
�guration, during the learning phase (17 episodes) of a recon�guration task
policy, for experiment 6

Discussion

In �gures 4.23, 4.25 and 4.27 the evolution of the number of actions performed
during the learning phase can be observed, as more episodes were performed.
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Figure 4.24: Number of actions performed before reaching the target con�g-
uration, using the learned policy after 17 episodes, for experiment 6
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Figure 4.25: Number of actions performed before reaching the target con-
�guration, during the learning phase (31 episodes) of a recon�guration task
policy, for experiment 6
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Figure 4.26: Number of actions performed before reaching the target con�g-
uration, using the learned policy after 31 episodes, for experiment 6
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Figure 4.27: Number of actions performed before reaching the target con-
�guration, during the learning phase (37 episodes) of a recon�guration task
policy, for experiment 6
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Figure 4.28: Number of actions performed before reaching the target con�g-
uration, using the learned policy after 37 episodes, for experiment 6

The negative tendency indicates the e�ect of the learning process, based on
the experience gathered from previous episodes. However, that tendency
tends to be less decreasing as more episodes are performed. This indicates
that the number of actions performed during those episodes tend to stabilize,
which suggests a greater usage of the gathered experience, represented by the
obtained policy. This means that if the number of actions performed during
the learning phase stabilizes, it's highly probable that a stable policy is being
reached. The di�erence between the number of actions performed during the
�rst learning episodes and the number of actions performed during the last
episodes shows a great improvement, which is due to the fact that the robot
has learned.

In �gures 4.24, 4.26 and 4.28 the evolution of the performance of the
policy derived from the learning phase can be seen as more learning episodes
were done. Initially, the policy turned out to be highly unstable, while in the
latest stages, while it still wasn't stable, the number of actions performed on
average by the policy were notably inferior than in the early learning stages.

Finally, �gure 4.28 shows that a stable policy is reached, and that it
involves a very little number of actions to reach the target con�guration.
Clearly this problem is more complex than those introduced in experiments
3 and 4, which re�ects in the greater number of episodes that had to be
performed (37 learning episodes were necessary to reach a stable policy).
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4.2.6 Experiment 7: From circular to linear structure,
with docking/undocking, using complex actions

Having completed the �rst phase of experimentation (where we studied dif-
ferent variations of the same problem � starting from a linear con�guration
and trying to reach a circular con�guration), the next two experiments deal
with the opposite task, that is, starting from a circular and fully coupled
con�guration, and trying to reach a linear con�guration.

The actions and state de�ned for this experiment are the same as those
used for experiment 5.

The reward function, however, had to be modi�ed. Since in this ex-
periment it is necessary to detach modules, it might be possible that some
module would be completely decoupled from the rest of the robot, and while
it theoretically could reattach itself, this is so improbable according to the
conditions that must hold, that it resulted more practical to assign a negative
reward (so as to avoid this from happening in the future), and aborting the
simulation (like it was done in experiment 5).

For this reason, the reward function was de�ned as

reward =


1 if the target con�guration is reached
−1 if the simulation was aborted

0 otherwise
(4.14)

Since it's possible to abort simulations, we rede�ned an episode as the
sequence of simulations necessary to reach the target con�guration (i.e. the
sequence of aborted simulations plus the simulation that returns a positive re-
ward). According to this, the number of actions performed during an episode
is the sum of the number of actions performed during each simulation be-
longing to that episode.

Results

In this experiment 13 episodes were performed, which represent a total of
70 simulations. At the end of those 13 episodes no policy that would ful�l
the goal was reached (the obtained policy after 13 episodes cycles between 3
con�gurations all of which are completely coupled).

This cyclic behaviour can be observed in �gure 4.29, which represents a
full cycle produced by the actions selected by the learned policy.

The simulation results are shown in �gures 4.30 - 4.33.
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Figure 4.29: States corresponding to a cycle in the actions produced by the
learned policy for experiment 7. Top left: state 1. Top right: state 2. Bottom
left: state 3. Bottom right: state 4 (equal to state 1).
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Figure 4.30: Number of actions performed before reaching the target con-
�guration, during the learning phase (3 episodes) of a recon�guration task
policy, for experiment 7
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Figure 4.31: Number of actions performed before reaching the target con-
�guration, during the learning phase (7 episodes) of a recon�guration task
policy, for experiment 7
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Figure 4.32: Number of actions performed before reaching the target con-
�guration, during the learning phase (11 episodes) of a recon�guration task
policy, for experiment 7
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Figure 4.33: Number of actions performed before reaching the target con-
�guration, during the learning phase (13 episodes) of a recon�guration task
policy, for experiment 7

Discussion

As can be seen in �gures 4.30, 4.31, 4.32 and 4.33, the tendency of the number
of actions performed during the learning episodes varies as more episodes
are performed. This is because when the number of learning episodes is
not enough, the approximation performed based on the existing data does
not correlate to the long-term global tendency. It can also be seen that
initially the slope of this curve is steeper than when more data is available
(i.e. after having performed more learning episodes). This is because while
more episodes are performed, the approximation is closer to the real tendency.
Therefore, a �uctuation in this curve might indicate the need of performing
more learning episodes.

During the observation of the robot's behaviour while using the policy
obtained after 13 learning episodes, it can be seen that the robot cycles
between 3 con�guration, and thus cannot reach the target con�guration. The
obtained policy, while it always performs the same actions, is not satisfactory,
since it doesn't allow to reach the target con�guration. This inconvenient
can probably be overcome by performing more learning episodes, in order
to provide more exploratory actions that allow to determine better ways of
reaching the target con�guration.

Therefore, as can be observed in the presented graphics, and as could be
observed during the performed simulations, the obtained behaviour is most
probably due to an insu�cient number of learning episodes performed.
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In this occasion we decided not to continue performing learning episodes,
because we considered that it was more rewarding to modify the experiment
in order to use simple actions instead of complex actions. This is so because
the use of simple actions reduces the size of the state-action space, allowing
to �nd an optimal policy with a higher probability.

4.2.7 Experiment 8: From circular to linear structure,
with docking/undocking, using simple actions

As mentioned previously, this experiment is basically a simpli�cation of the
previous experiment, modifying the de�nition of action in order to use simple
actions. We pretend to evaluate the fact that not having reached an optimal
policy in the previous experiment is because the number of learning episodes
were not enough for the size of the state-action space. Therefore, by sim-
plifying the actions, and thus reducing the size of the state-action space, we
should be able to �nd an optimal policy using a relatively small amount of
learning episodes.

Results

In this case, we performed 7 episodes, constituting a total of 526 simulations.
The results obtained from these can be observed in �gures 4.34 - 4.37.
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Figure 4.34: Number of actions performed before reaching the target con-
�guration, during the learning phase (3 episodes) of a recon�guration task
policy, for experiment 8
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Figure 4.35: Number of actions performed before reaching the target con�g-
uration, using the learned policy after 3 episodes, for experiment 8
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Figure 4.36: Number of actions performed before reaching the target con-
�guration, during the learning phase (7 episodes) of a recon�guration task
policy, for experiment 8
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Figure 4.37: Number of actions performed before reaching the target con�g-
uration, using the learned policy after 7 episodes, for experiment 8

Discussion

As can be observed in �gure 4.37, unlike the previous experiment, in this case
we reached a stable policy. Even though less episodes were performed, the
number of simulations was higher. The reason for this is that since having
less available actions (in this experiment we used simple actions instead of
complex actions), the probability of performing undocking actions (which can
make the simulation to be aborted) is higher. By having many simulations
be aborted, it is necessary to perform more simulations per episode, which
a�ects the number of times the di�erent states get visited, thus improving
the robot's learning process.

4.2.8 Conclusions

In the light of the results obtained from the performed experiments, it can
be seen that learning a recon�guration task in an M-TRAN robot is feasible.
Certain aspects, like the de�nition of an episode, the reward function, states
and actions, naturally depend strongly on the problem at hand, and must
therefore be re�ned as problems occur with the used de�nitions, but in the
end it is possible to successfully learn recon�guration tasks.

We can then conclude that the M-TRAN robots possesses the necessary
abilities to successfully perform learning tasks in the �eld of recon�guration
(at least those tasks that are simple enough).



Chapter 5

Proof of concept: policy

combination

After performing a diverse set of experiments that each veri�ed the hypothesis
that an M-TRAN Self-Recon�gurable Modular Robot possess the capacity
of learning behaviours for solving recon�guration and locomotion tasks by
using Reinforcement Learning, we tried to push the limits a little bit and
perform a proof of concept to show the real utility of this method.

A more complex experiment was de�ned that involves all the analyzed
capacities. An obstacle was to be put in the environment that couldn't be
overcome unless the robot could change it's con�guration.

In this case it was decided that the way of overcoming the obstacle was
by sliding below it, in a linear con�guration for performing caterpillar-like
locomotion. This obstacle could be representing a hole in a wall that could
give access to another room in a real world scenario. This type of scenarios
would be very plausible in situations like collapsed building exploration, for
example.

The suggested experiment starts with the robot at one end of the exper-
imentation environment, and con�gured in a wheel-like con�guration. The
robot has to advance until it detects the obstacle. Once detected, it should
recon�gure into a linear con�guration that allow it to slide under the ob-
stacle. Once on the other side, it must again recon�gure into a wheel-like
con�guration in order to continue advancing.

This problem, as was just described, can be divided into several subprob-
lems, each of which requires the robot to learn a di�erent behaviour in order
to solve them. By combining the individual behaviours, it's possible to solve
the global problem, and overcome the obstacle.

The initially identi�ed subproblems are:
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1. Perform locomotion in a wheel-like con�guration

2. Recon�gure from a wheel-like con�guration into a linear con�guration

3. Perform locomotion in a linear con�guration

4. Recon�gure from a linear con�guration into a wheel-like con�guration

It was decided that the robot used for this experiment should be formed
by 5 modules. This number is enough in order for the problem to present a
greater level of complexity than the problems solved previously, in chapter
4.

For each identi�ed subproblem a policy was obtained that would allow the
robot to achieve the goal at hand (being advancing or recon�guring itself).

Once these policies were obtained, a way had to be de�ned for these poli-
cies to be combined in order to attain a global and more complex behaviour
that would re�ect the behaviours associated with each policy, according the
the di�erent situations encountered.

When combining these policies, a problem was detected: while each pol-
icy could solve each individual problem for which they were generated, they
would only be appropriate under the exact conditions under which they were
acquired. That is, a recon�guration policy could only reach the target con�g-
uration if it was evaluated starting from the same initial state as used during
the learning of that policy.

Since it wasn't possible to initially determine the state in which the robot
would be when one policy should stop being used and another should start, it
was necessary to add new policies that would allow the robot to adapt from
each of the possible �nal states for one policy into the initial state required
by the next policy to be executed. New policies were required for:

a. Adapting the �nal states reached when using policy 1 into the initial
state required by policy 2.

b. Adapting the �nal states reached when using policy 3 into the initial
state required by policy 4.

Once these new policies were obtained, it was possible to combine all
policies in order for the robot to present a behaviour that would allow it to
overcome the obstacle and thus solve the more complex problem.
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5.1 Policy combination

When combining the di�erent policies learned independently, so to solve the
global problem, it is necessary to determine which policy must be used at
each moment. For this, proximity sensors were implemented that allowed
the robot to detect obstacles. The robot used for this experiment would then
have one proximity sensor in each module, besides all the sensors described
in chapter 4.

These proximity sensors would be valued according to the following equa-
tion:

v =

{
1 if distance[i] < 0.5 ∗ length[i] + ranges
0 otherwise

(5.1)

where

distance = distance vector between the sensor and the obstacle

i = dimension in which the distance is maximal

length = vector of the obstacle's sides lengths

ranges = sensor's maximum sensing range

By means of these new sensors, it's possible to determine if the robot has
an obstacle ahead, above or behind itself. To determine this, the values of
the sensors of the module closest to the emitting source and of the module
farthest away from the emitting source are taken. The former allows to
determine if an obstacle is ahead of the robot, while the latter indicates if
the obstacle is behind the robot. If both sensors are activated (their value is
1), the obstacle lies above the robot.

A set of rules was de�ned according to the values of these sensors, that
allow to determine the policy that must be used at each moment. Then, after
each action is executed, these rules are evaluated and it can be determined
if it's necessary to update the current policy (i.e. choosing a di�erent policy
than the one being used). In the case of the recon�guration policies, the
policy change takes place when the new con�guration is reached (i.e. when
the �nal state for those policies is reached).

As can be observed in tables 5.1 and 5.2, the policy is determined by the
proximity sensor values, in the case of locomotion policies (the only policies
that produce changes are policies 1 and 3, which are locomotion policies),
while in the case of recon�guration policies the second table shows the policy
to be used once the target con�guration has been reached (in this case,
policies 1 and 3 are the ones that stay unmodi�ed).
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Current policy Sensor values Next policy
Front Rear

1 0 0 1
1 0 1 1
1 1 0 a
1 1 1 a
a 0 0 a
a 0 1 a
a 1 0 a
a 1 1 a
2 0 0 2
2 0 1 2
2 1 0 2
2 1 1 2
3 0 0 b
3 0 1 3
3 1 0 3
3 1 1 3
b 0 0 b
b 0 1 b
b 1 0 b
b 1 1 b
4 0 0 4
4 0 1 4
4 1 0 4
4 1 1 4

Table 5.1: Rule set that de�ne the policy to be used, according to the values
of the proximity sensors

Current policy Next policy
1 1
a 2
2 3
3 3
b 4
4 1

Table 5.2: Rule set that de�nes the policy to be used, after reaching the
stopping condition
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5.2 Results

Next we present the results of the experiments regarding obtaining the poli-
cies used in this context.

5.2.1 Policy 1: perform locomotion in a wheel-like con-
�guration

This policy was the only one that was not obtained through learning. Basi-
cally, the amount of possible states was so overwhelming, even after introduc-
ing previous knowledge, that it would have taken too much time to learn the
policy. Without a doubt, the treatment of the state space for Reinforcement
Learning in this kind of robots constitutes a future and necessary line of
research. Next we present an estimate for the size of the state-action space,
in order to justify this decision.

The actions a module can perform can be divided into

1. Activate a motor: 8 possible actions

2. Dock with another module: 3 possible actions (for each other module)

3. Undock from another module: 3 possible actions

So, if the robot is built from 5 modules, the total amount of actions is

(8 + 3 ∗ 4 + 3)5 = 235 = 6436343

Of course this is just the upper bound, since in the problem as it was
de�ned, it isn't necessary to dock nor undock with another module. There-
fore, thanks to previous knowledge about the given problem, it's possible to
eliminate those actions, and so this number gets reduced to

85 = 32768

In this context, the state of a module is composed by

• 2 motors, with 3 values for each motor

• 2 sensors, with 2 values for each sensor

Therefore, the number of states a module can be in is

2 ∗ 2 ∗ 3 ∗ 3 = 36
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and thus, the total amount of possible states for the robot is

365 = 60466176

We have to remember that we used previous knowledge to reduce the
size of the state space (since couplings between modules are not taken into
account). It's also true that this last value is an upper bound for the number
of possible states, given the con�guration the robot is in. Since the robot
�nds itself most of the time in the same relative position to the emitting
source, a more realistic bound would be

(2 ∗ 3 ∗ 3)5 = 1889568

By using these calculated values, we can estimate the approximate size
for the state-action space to be

1889568 ∗ 32768 = 6.19 ∗ 1010

possible values.
Even assuming one action can be performed per second, in order to fully

explore the state-action space it would require

6.19 ∗ 1010 seconds ≈ 1031956070 minutes

≈ 17199268 hours

≈ 716637 days

≈ 23888 months

≈ 1990 years

Clearly, the problem is complex. Since in order to guarantee that the
learning algorithm converges to the optimal policy it's necessary that all
states are visited continuously, this problem can not be treated directly as it
is. In order to be able to learn a policy that solves this problem it will be
necessary to further restrict it, so to further reduce the size of the state-action
space, or de�ning a more convenient representation for states and actions.
As the goal of this experiment wasn't to �nd the optimal policy for the
locomotion task in a 5-module robot con�gured in a wheel-like con�guration
(but to use this policy for solving a more complex problem), we decided to
generate the policy manually. Even though this manually generated policy
might not be optimal, it correctly solves the problem.
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5.2.2 Policy a: adapting the �nal states reached when
using policy 1 into the initial state required by
policy 2

To develop this policy, an iterative approach was tried. To simplify the learn-
ing process, we decided to guide the policy's evolution. So, several learning
episodes were performed that consisted in learning to revert the actions per-
formed by the previous policy. Let the initial state required by policy 2 be
s0, and let the �nal states reached when using policy 1 be s1, s2, . . .. We
started learning a policy for going from state s1 to state s0. Once this was
learned, the goal was modi�ed so that the learned policy would be extended
with the knowledge of how to go from state s2 to s1. The same was done for
each of the possible states (s3 to s2, s4 to s3, . . .). As a result, we obtained
a policy that was able to reach the state s0 from any of the �nal states si.

In this way, the complexity could be kept bounded and a policy could be
found that would solve the problem in an adequate way.
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Figure 5.1: Number of simulations performed per learning episode of policy
a.

In this case, since each learning episode constituted a di�erent problem,
and therefore an independent problem, it doesn't make sense the calculate
a �global tendency� as in the other experiments. Because of this, �gures 5.1



CHAPTER 5. PROOF OF CONCEPT 99

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0  1  2  3  4  5  6  7

A
ct

io
ns

Episodes

Data

Figure 5.2: Number of actions performed during each learning episode of
policy a.

and 5.2 only show the number of simulations and actions required by each
learning episode.

5.2.3 Policy 2: recon�gure from a wheel-like con�gura-
tion into a linear con�guration

In this case, 7 learning episodes were performed, adding up a total of 332
simulations, during which 3038 actions were executed.

The treated problem was simple enough so as not having to reduce the
state-action space.

As can be seen in �gures 5.3 - 5.6, at the end of the learning episodes, a
policy was found that e�ciently solved the recon�guration task.

5.2.4 Policy 3: perform locomotion in a linear con�gu-
ration

For the next policy, 13 learning episodes were performed, constituted by 16
simulations, that encompassed a total of 2243 actions. In this case, due to the
big state-action space size, it was necessary to reduce the latter, simplifying
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Figure 5.3: Number of simulations required for each learning episode of policy
2.
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Figure 5.4: Number of actions performed during each learning episode of
policy 2.
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Figure 5.5: Number of actions performed by policy 2 before reaching the
target con�guration, during the validation phase, after 3 learning episodes.
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Figure 5.6: Number of actions performed by policy 2 before reaching the
target con�guration, during the validation phase, after 7 learning episodes.
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the problem. The available actions were limited so that it was only possible
to activate 2 motors: the motor of the passive block nearest to the emitting
source, and the motor of the active block farthest away from it. These blocks
form both ends of the robot.

This decision was based on the fact that a policy could be manually
generated that would solve the locomotion task by just using those motors.
So, we proceeded to learn a policy that showed a similar behaviour to the
manually generated policy. In this way a policy was found through learning
that could achieve locomotion in a linear con�guration. It's expected that the
generated policy is not optimal regarding the robot's locomotion capabilities
(i.e. if the actions wouldn't have been limited), but it resulted good enough
for this experiment.
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Figure 5.7: Number of actions performed before reaching the goal, during
the learning phase (7 episodes) of policy 3.

5.2.5 Policy b: adapting the �nal states reached when
using policy 3 to the initial state required by pol-
icy 4

To determine the correct policy for the problem of adapting policy 3 to
policy 4, 36 learning episodes had to be performed. In this occasion only one
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Figure 5.8: Number of actions performed before reaching the goal, during
the validation phase for policy 3, after 7 learning episodes.
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Figure 5.9: Number of actions performed before reaching the goal, during
the learning phase (13 episodes) of policy 3.
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Figure 5.10: Number of actions performed before reaching the goal, during
the validation phase for policy 3, after 13 learning episodes.

simulation was needed per episode, and a total of 170 actions were performed.
This time we proceeded in a similar way as in the case of policy a. The

learned policy was constructed incrementally, but instead of guiding the so-
lution, we proceeded to extend the policy by directly evaluating the recon-
�guration between each possible �nal state of policy 3 and the initial state
of policy 4. This distinction was made because in this case the problem was
simpler than in the previous case.

This last assertion can be appreciated in the results obtained during the
learning phase, where for each learning episode only 6 actions were performed
on average.

5.2.6 Policy 4: recon�gure from a linear con�guration
into a wheel-like con�guration

Finally, for the last policy, 3 learning episodes were performed, adding up a
total of 126 simulations and performing a total of 3207 actions.

In this case, the policy was rapidly obtained (only a few actions were
necessary during each learning episode) and it turned out to be e�cient in
solving the recon�guration task, which can be observed in the few number
of actions it requires to reach the target con�guration.
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Figure 5.11: Number of actions performed during each learning episode of
policy b.
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Figure 5.12: Number of actions performed before reaching the target con�g-
uration, during the learning phase (3 episodes) of policy 4.
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Figure 5.13: Number of actions performed before reaching the target con�g-
uration, during the validation phase of policy 4, after 3 learning episodes.

5.3 Conclusions

In spite of the inconvenients during the learning of some policies, it could be
seen that it's possible to combine simple policies learned independently, and
obtain as a result a more complex behaviour.

We detected an inconvenient due to the fact that the initially developed
policies strongly depended on the initial state. This inconvenient can be
easily avoided if all possible initial states are taken into account when �rst
learning the policy (as it was later done with the policies it was necessary to
add in order to �x this error), so this does not really represent a problem.

Even though not all policies were obtained through learning, this doesn't
either represent a problem since

1. it is possible to learn those policies, by correctly restricting the size of
the state-action space. In this occasion it wasn't considered relevant to
spend the greater amount of time it takes to learn those more complex
policies, since the way they are obtained does not alter the result of
the experiment.

2. the mechanism used for combining the policies does not takes into
account the way in which the policies were acquired, so it's possible
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to combine policies learned, evolved, manually generated or acquired
in any other way.

This last fact can be considered as a positive characteristic of the method,
because in certain cases it's not vital to acquire a policy through learning, and
it can even be better to obtain the policy in some other way; for example, it's
possible to obtain an optimal policy manually, when the behaviours involved
are su�ciently simple. In this cases, it can be better to use those manually
generated policies, and dedicate the saved time to learn a policy for a more
complex behaviour.

As a �nal conclusion, it is clear that it's perfectly possible to use policies
associated to simple behaviours, and by combining them produce as a result a
policy that describes a more complex behaviour. This is good, since directly
obtaining a policy for the global behaviour can sometimes be extremely di�-
cult (both when trying to de�ne it manually or if a computational approach
is used, like learning or evolution).



Chapter 6

Conclusions

In the current work we presented an overview of the state of the art in
the �eld of Self-Recon�gurable Modular Robots, and developed a simulator
with which experiments were performed relative to the use of the Reinforce-
ment Learning methodology applied to the problem of obtaining behaviours
that would allow to solve locomotion and recon�guration tasks with Self-
Recon�gurable Modular Robots. For each type of behaviour to be learned
the most adequate representation for the state-action space had to be studied
and the conditions under which Reinforcement Learning was possible had to
be de�ned. The performed analysis constituted a �rst approach to the prob-
lem that was presented in this work, from which it was possible to extract
some characteristics inherent to the problem at hand, and determine factors
to be taken into account in order to continue working in this �eld. Finally, a
problem was proposed that combined locomotion and recon�guration tasks,
and was resolved by means of the studied methodology.

During the analysis of the state of the art in the �eld of Self-Recon�gurable
Modular Robots, it could be seen that e�ectively, no mention could be found
of using Reinforcement Learning as a methodology for solving locomotion
and recon�guration tasks in this type of robots.

Through the performed experiments it could be veri�ed that the devel-
oped simulator ful�lled the requirements to be used in experiments dealing
with Reinforcement Learning applied to obtaining adequate behaviours for
solving locomotion and recon�guration tasks. It was also shown that it was
possible to learn e�cient policies for performing locomotion and recon�gu-
ration tasks in Self-Recon�gurable Modular Robots (at least in the case of
the M-TRAN robot).

Most of the performed experiments were successful. Those that couldn't
be successfully solved, showed that the size of the state-action space was an
important obstacle for obtaining acceptable results, and that a more general
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treatment of this problem constitutes a future line of research.
By means of the performed experiments it was shown that it is feasible

to use the methodology of Reinforcement Learning in order to learn e�cient
policies. It was also shown that it's possible to combine simple and inde-
pendently learned policies and obtain as a result a more complex behaviour.
This last fact is of great importance, since thanks to it, it's not indispensable
to solve the more complex tasks directly, which can be very di�cult due to
the size of the state-action space associated to the more complex problems;
on the contrary, it is possible to divide the complex problem into subprob-
lems that are easier to solve, learn an adequate policy for each subproblem,
and then combine those policies in order to solve the global problem.

It is clear then that the proposed methodology can be useful in this area,
and that e�ectively it's necessary to extend the research done in this con-
text, in order to determine better ways of allowing these robots to adapt to
environmental changes and through this, make maximal use of their intrinsic
capabilities.

Some possible future lines of research include:

• Study the way of reducing the size of the state-action space, in order to
be able to work with bigger robots and/or with more complex problems.

• Generalize the performed experiments, in order to work with robots
with more complex structures.

• Determine ways to learn how to combine policies, instead of having to
manually specify how the combination is done.

• Study ways of learning to adapt to changing environmental conditions.

• Study ways of learning to adapt to di�erent perception capabilities
(adding/removing sensors).
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Recon�gurable Modular Robot

Comparison

DOF Homogen. 3D Type Self- Coupling
Reconf.

CONRO 2 X X Chain X Mechanical/Bipartite
Polybot 1 X X Chain X Mechanical/Bipartite
ACM 1-3 X X Chain × Mechanical
Metamorphic 3 X × Lattice X Mechanical/Bipartite
Crystalline 2 X X Lattice X Mechanical/Bipartite
Fractum 0 X × Lattice X Magnetical/Bipartite
Micro Unit 2 X × Lattice X Mechanical/Bipartite
RIKEN Vertical 2 X × Lattice X Magnetical/Bipartite
Telecube 6 X X Lattice X Magnetical/Bipartite
MEL 3D Unit 12 X X Lattice X Mechanical/Bipartite
Molecule 4 X X Lattice X Mechanical/Bipartite
M-TRAN (I y II) 2 X X Hybrid X Magnetical/Bipartite
M-TRAN III 2 X X Hybrid X Mechanical/Bipartite
I(ces)-Cubes 3 × X Lattice X Mechanical/Bipartite
Fracta 12 X X Lattice X Mechanical/Hermaphrodite
Proteo 0 X X Lattice X Magnetical/Bipartite
Miniaturized 2 X × Lattice X Mechanical/Bipartite
Semi-Cylindrical 2 X X Lattice X Magnetical/Bipartite
TETROBOT 3-5 X X Lattice × Mechanical/Bipartite
CEBOT 1-3 X × Lattice × Bipartite

Table A.1: Recon�gurable Modular Robot Comparison
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Experimental Results

Parameters Distance Distance Actions Finished
alpha epsilon gamma Advanced Travelled Executed Learning

0.1 0.5 0.5 22.55 168.65 172 X
0.2 0.5 0.5 24.60 181.30 190 X
0.3 0.5 0.5 23.40 180.70 181 X
0.4 0.5 0.5 18.85 188.80 192 X
0.5 0.5 0.5 22.20 191.40 199 X
0.6 0.5 0.5 25.80 174.60 181 X
0.7 0.5 0.5 23.25 172.75 178 X
0.8 0.5 0.5 22.55 179.45 183 X
0.9 0.5 0.5 19.40 186.10 189 X

Table B.1: Results obtained during the learning phase for the locomotion
task proposed in section 4.1, for di�erent values of the parameter alpha
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Parameters Distance Distance Actions Finished
alpha epsilon gamma Advanced Travelled Executed Learning

0.5 0.1 0.5 29.80 73.50 78 X
0.5 0.2 0.5 29.75 104.10 105 X
0.5 0.3 0.5 29.55 122.05 125 X
0.5 0.4 0.5 29.65 143.05 142 X
0.5 0.5 0.5 22.35 179.45 181 X
0.5 0.6 0.5 14.30 194.50 201 ×
0.5 0.7 0.5 12.10 196.95 200 ×
0.5 0.8 0.5 4.90 188.10 201 ×
0.5 0.9 0.5 5.90 176.55 201 ×

Table B.2: Results obtained during the learning phase for the locomotion
task proposed in section 4.1, for di�erent values of the parameter epsilon

Parameters Distance Distance Actions Finished
alpha epsilon gamma Advanced Travelled Executed Learning

0.5 0.5 0.1 26.55 166.05 173 X
0.5 0.5 0.2 24.55 169.10 179 X
0.5 0.5 0.3 25.65 171.10 177 X
0.5 0.5 0.4 22.85 183.15 187 X
0.5 0.5 0.5 23.15 184.35 191 X
0.5 0.5 0.6 29.35 162.75 162 X
0.5 0.5 0.7 26.75 180.35 177 X
0.5 0.5 0.8 23.85 168.30 170 X
0.5 0.5 0.9 23.40 176.40 181 X

Table B.3: Results obtained during the learning phase for the locomotion
task proposed in section 4.1, for di�erent values of the parameter gamma
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Parameters Distance Distance Actions Performance
alpha epsilon gamma Advanced Travelled Executed

0.1 0.5 0.5 29.50 70.50 63 0.23247
0.2 0.5 0.5 29.50 70.50 63 0.23247
0.3 0.5 0.5 22.50 65.50 148 0.12850*

0.4 0.5 0.5 29.50 71.00 63 0.22962
0.5 0.5 0.5 29.50 71.50 63 0.22962
0.6 0.5 0.5 26.50 76.00 137 0.15608*

0.7 0.5 0.5 29.50 75.70 62 0.21981
0.8 0.5 0.5 29.50 70.50 63 0.23247
0.9 0.5 0.5 29.50 70.50 63 0.23247
0.5 0.1 0.5 29.50 63.50 62 0.26225
0.5 0.2 0.5 29.50 73.00 79 0.19539
0.5 0.3 0.5 29.50 78.00 102 0.19117*

0.5 0.4 0.5 27.00 90.00 114 0.15824*

0.5 0.5 0.5 29.50 70.50 63 0.23247
0.5 0.6 0.5 29.50 70.50 63 0.23247
0.5 0.7 0.5 29.50 62.00 56 0.35310
0.5 0.8 0.5 29.50 70.50 63 0.23246
0.5 0.9 0.5 29.50 74.50 59 0.23490
0.5 0.5 0.1 29.50 70.50 63 0.23247
0.5 0.5 0.2 29.50 70.50 63 0.23247
0.5 0.5 0.3 29.50 70.50 63 0.23247
0.5 0.5 0.4 29.50 75.50 62 0.21988
0.5 0.5 0.5 29.50 71.00 63 0.22884
0.5 0.5 0.6 29.50 57.00 98 0.30714*

0.5 0.5 0.7 29.50 75.50 62 0.22057
0.5 0.5 0.8 29.50 72.00 66 0.22132
0.5 0.5 0.9 29.50 83.50 88 0.18831*

* when using these parameters, some simulations had to be terminated due
to the limit for the maximum allowed number of actions.

Table B.4: Results obtained during the evaluation of the learned policies for
the locomotion task proposed in section 4.1
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M-TRAN II and M-TRAN III

Images

C.1 M-TRAN II

Figure C.1: Locomotion in an easy terrain.
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Figure C.2: Recon�guration to overcome an obstacle.

Figure C.3: Recon�guration for climbing.
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Figure C.4: Quadruped

Figure C.5: Minimal version of a quadruped robot.
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Figure C.6: Minimal version of a quadruped robot.

Figure C.7: Con�guration for caterpillar-like locomotion.
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Figure C.8: Con�guration for caterpillar-like locomotion.

Figure C.9: Con�guration for hexapod-shape locomotion.
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Figure C.10: Con�guration for wheel-like locomotion.

Figure C.11: Due to recon�guration it is possible to overcome obstacles.
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Figure C.12: Quadruped locomotion.

Figure C.13: Con�guration for snake-like locomotion.
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Figure C.14: Arachnid-like con�guration.
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C.2 M-TRAN III

Figure C.15: Recon�guration from quadruped to lineal (8 modules).

Figure C.16: Recon�guration from quadruped to lineal (4 modules).
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